
Squash Autom & Squash Devops
Release 1.0.0-alpha1

squashtest

Mar 12, 2021

CONTENTS

1 Squash AUTOM 3
1.1 Installation Guide . 3
1.2 Piloting automated tests executions with an EPAC (Execution Plan «as code») 4
1.3 Piloting automated tests executions from Squash TM . 4

2 Squash DEVOPS 13
2.1 Installation Guide . 13
2.2 Calling the Squash Orchestrator from a Jenkins pipeline . 14
2.3 Squash TM test execution plan retrieval with a PEAC . 16

i

ii

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Squash AUTOM is a set of components for the management of the execution of your automated tests.

Squash DEVOPS is a set of components for the integration of the execution of your automated functional tests to
your continuous integration pipeline.

CONTENTS 1

Squash Autom & Squash Devops, Release 1.0.0-alpha1

2 CONTENTS

CHAPTER

ONE

SQUASH AUTOM

1.1 Installation Guide

• Squash Orchestrator

• Result Publisher Plugin for Squash TM

1.1.1 Squash Orchestrator

The Squash Orchestrator is available as Docker image on DockerHub (squashtest/squash-
orchestrator:1.0.0.alpha1).

The deployment procedure can be found in the Squash Orchestrator documentation (Squash Orchestrator Documen-
tation – 1.0.0.alpha1, .pdf version) downloadable at https://www.squashtest.com/community-download.

1.1.2 Result Publisher Plugin for Squash TM

The plugin exists in a Community version (squash.tm.rest.result.publisher.community-1.0.0.alpha1.jar) freely avail-
able, or a Premium version (squash.tm.rest.result.publisher.premium-1.0.0.alpha1.jar) available on request.

For details on the installation, please refer to installation protocol of a Squash TM plugin
(https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2—installation-of-squash-
tm/7—jira-plug-in).

Warning: This plugin is compatible with version 1.22.1.RELEASE of Squash TM.

3

https://www.squashtest.com/community-download
https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2---installation-of-squash-tm/7---jira-plug-in
https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2---installation-of-squash-tm/7---jira-plug-in

Squash Autom & Squash Devops, Release 1.0.0-alpha1

1.2 Piloting automated tests executions with an EPAC (Execution
Plan «as code»)

Squash AUTOM allows the redaction of an execution plan in a format specific to the Squash Orchestrator, the
EPAC (Execution Plan «as code»), in order to orchestrate with precision the execution of automated tests outside of a
test repository.

You can find more information regarding the redaction of an EPAC in the Squash Orchestrator documentation
(Squash Orchestrator Documentation – 1.0.0.alpha1, .pdf version) downloadable from https://www.squashtest.com/
community-download.

1.3 Piloting automated tests executions from Squash TM

• Squash TM test case automation

• Test plan execution from Squah TM

• Results publication after a Squash TM test plan execution

1.3.1 Squash TM test case automation

Without using the Squash automation workflow

For a test case to be usable by the Squash Orchestrator, its Automation panel in the Information tab of the test case
page must be correctly filled :

• Automated test technology : A dropdown list allowing you to choose the technology used for the
execution of a test case. In this version, only Robot Framework and Junit are functioning.

• Source code repository URL : The address of the source code repository where the project is located.

4 Chapter 1. Squash AUTOM

https://www.squashtest.com/community-download
https://www.squashtest.com/community-download

Squash Autom & Squash Devops, Release 1.0.0-alpha1

• Automated test reference : This is the location of the automated test within the project. This reference
must follow the format specific to the test technology used (see here).

Using the Squash automation workflow

Regular test case

For a test case to be usable by the Squash Orchestrator, it must be automated in the Automation Workspace by filling
three columns :

• Auto. test tech. : A dropdown list allowing you to choose the technology used for the execution of a
test case. In this version, only Robot Framework and Junit are functioning.

• Scm URL : The address of the source code repository where the project is located.

• Auto. test ref. : This is the location of the automated test within the project. This reference must follow
the format specific to the test technology used (see here).

Warning: A known issue of this version is the lack of repository name at the begining of the reference when
automatically filled by Squash TM. It is therefore necessary to add it manually. This name is the last part of the
source code repository URL.

BDD or Gherkin test case

The informations of the Automation panel are automatically filled during the transmission of a BDD or Gherkin script
to a remote source code repository host service. They can also be modified by the user at any moment.

Automation frameworks specifics

Automation with Robot Framework

In order to bind a Squash TM test case with a Robot Framework automated test, the content of the Automated test
reference field of the Automation panel of a test case must have the following format :

[1] / [2] # [3]

With :

• [1] : Name of the project on the source code repository.

• [2] : Path and name of the Robot Framework test, from the root of the project (with the .robot extension).

• [3] : Name of the test case to execute in the .robot file.

Below is an exemple of a .robot file and the corresponding Squash TM test case automation :

1.3. Piloting automated tests executions from Squash TM 5

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Automation with JUnit

In order to bind a Squash TM test case with a JUnit automated test, the content of the Automated test reference field
of the Automation panel of a test case must have the following format :

[1] / [2] # [3]

With :

• [1] : Name of the project on the source code repository.

• [2] : Qualified name of the test class.

• [3] : Name of the method to test in the test class.

Below is an exemple of a test class and the corresponding Squash TM test case automation :

6 Chapter 1. Squash AUTOM

Squash Autom & Squash Devops, Release 1.0.0-alpha1

1.3.2 Test plan execution from Squah TM

This functionnality is not available in the 1.0.0.alpha1 version.

It is however possible to trigger the execution of a Squash TM test plan from a Jenkins pipeline. Please refer to the
Squash DEVOPS user guide.

1.3. Piloting automated tests executions from Squash TM 7

Squash Autom & Squash Devops, Release 1.0.0-alpha1

1.3.3 Results publication after a Squash TM test plan execution

Independently from the means used to trigger a test plan execution (from Squash TM or a Jenkins pipeline), the kind
of results published in Squash TM at the end of the execution of a test plan will differ depending on the usage of a
Squash AUTOM Community or Squash AUTOM Premium licence.

Squash AUTOM Community

After the execution of a Squash TM test plan (iteration or test suite), the following informations are updated :

• ITPIs status update.

• Automated suite status update.

• The various ITPIs execution reports are accessible from the Automated Suites tab of the iteration or test suite :

This, however, doesn’t happen :

• Creation of a new execution for each executed ITPI.

Squash AUTOM Premium

If you are using the Squash AUTOM Premium components, you have access to two types of results publication :

• Light (default value).

• Complete.

The choice of publication type is operated on a project basis by accessing the configuration of the Squash TM Result
Publisher plugin from the Plugins tab of your project page, inside the Administration :

8 Chapter 1. Squash AUTOM

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Light results publication

By choosing the “Light” results publication, the following informations are updated after the execution of a
Squash TM test plan (iteration or test suite) :

• ITPIs status update.

• Automated suite status update.

• The various ITPIs execution reports are accessible from the Automated Suites tab of the iteration or test suite :

This, however, doesn’t happen :

• Creation of a new execution for each executed ITPI.

1.3. Piloting automated tests executions from Squash TM 9

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Complete results publication

By choosing the “Complete” results publication, the following informations are updated after the execution of a
Squash TM test plan (iteration or test suite) :

• ITPIs status update.

• Creation of a new execution for each executed ITPI.

• Automated suite status update.

• The execution reports of the various executions can be accessed from the Automated Suites tab of the iteration
or test suite, or from the execution page (the reports are present in the attached files) :

10 Chapter 1. Squash AUTOM

Squash Autom & Squash Devops, Release 1.0.0-alpha1

This guide will show you the various possibilities offered by the version 1.0.0.alpha1 of Squash AUTOM.

Warning: This version is intended to be used as a POC and therefore not in a production context (notably wth a
Squash TM whose database is new or a copy of an existing one).

This 1.0.0.alpha1 version provides two components :

• Squash Orchestrator : it is a tool composed of a set of micro-services to be used by sending an execution plan
written in a specific format, the EPAC (Execution plan «as code»), in order to orchestrate automated tests.

• Result Publisher Plugin for Squash TM : this plugin for Squash TM allows the return of informations towards
Squash TM at the end of the execution of a Squash TM execution plan by the Squash Orchestrator.

1.3. Piloting automated tests executions from Squash TM 11

Squash Autom & Squash Devops, Release 1.0.0-alpha1

12 Chapter 1. Squash AUTOM

CHAPTER

TWO

SQUASH DEVOPS

2.1 Installation Guide

• Squash Orchestrator

• Test Plan Retriever plugin for Squash TM

• Squash DEVOPS plugin for Jenkins

2.1.1 Squash Orchestrator

This micro-service exists as a Squash DEVOPS Community and a Squash DEVOPS Premium versions. It is
included in the Docker image of the Squash Orchestrator. For further details on the deployment of the Squash Or-
chestrator and the activation of the Squash TM Generator micro-service in Community or Premium version,
please refer to the Squash Orchestrator documentation (Squash Orchestrator Documentation – 1.0.0.alpha1, .pdf
version) downloadable from https://www.squashtest.com/community-download.

2.1.2 Test Plan Retriever plugin for Squash TM

The plugin exists in a Community version (squash.tm.rest.test.plan.retriever.community-1.0.0.alpha1.jar) freely
available, or a Premium version (squash.tm.rest.test.plan.retriever.premium-1.0.0.alpha1.jar) available on request.

For details on the installation, please refer to installation protocol of a Squash TM plugin
(https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2—installation-of-squash-
tm/7—jira-plug-in).

Warning: This plugin is compatible with version 1.22.1.RELEASE of Squash TM.

13

https://www.squashtest.com/community-download
https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2---installation-of-squash-tm/7---jira-plug-in
https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2---installation-of-squash-tm/7---jira-plug-in

Squash Autom & Squash Devops, Release 1.0.0-alpha1

2.1.3 Squash DEVOPS plugin for Jenkins

The plugin is freely available from https://www.squashtest.com/community-download, as a .hpi file (squash-devops-
1.0.0.alpha1.hpi).

To install it, submit the plugin in the Upload Plugin area accessible by the Advanced tab of the Plugin Manager in
Jenkins configuration :

Warning: This plugin is compatible with version 2.164.1 or higher of Jenkins

2.2 Calling the Squash Orchestrator from a Jenkins pipeline

• Configuring a Squash Orchestrator in Jenkins

• Call to the Squash Orchestrator from a Jenkins pipeline

14 Chapter 2. Squash DEVOPS

https://www.squashtest.com/community-download

Squash Autom & Squash Devops, Release 1.0.0-alpha1

2.2.1 Configuring a Squash Orchestrator in Jenkins

To access the configuration of the Squash Orchestrator, you first need to go the Configure System page accessible in
the System Configuration space of Jenkins, through the Manage Jenkins tab :

A panel named Squash Orchestrator servers will then be available :

• Server id : This ID is automatically generated and can’t be modified. It is not used by the user.

• Server name : This name is defined by the user. It is the one that will be mentioned in the pipeline script of
the workflow to be executed.

• Receptionist endpoint URL : The address of the receptionist micro-service of the orchestrator, with
its port as defined at the launch of the orchestrator. Please refer to the Squash Orchestrator documentation for
further details.

• Workflow Status endpoint URL : The address of the observer micro-service of the orchestrator, with
its port as defined at the launch of the orchestrator. Please refer to the Squash Orchestrator documentation for
further details.

• Credential : Secret text type Jenkins credential containing a JWT Token allowing authentication to the
orchestrator. Please refer to the Squash Orchestrator documentation for further details on secure access to the
orchestrator.

• Workflow Status poll interval : This parameter sets the interval between each update of the work-
flow status.

• Workflow creation timeout : Timeout on the reception of the EPAC by the receptionist on the orches-
trator side.

2.2. Calling the Squash Orchestrator from a Jenkins pipeline 15

Squash Autom & Squash Devops, Release 1.0.0-alpha1

2.2.2 Call to the Squash Orchestrator from a Jenkins pipeline

Once there is at least one Squash Orchestrator configured in Jenkins, it is possible to call the Squash Orchestrator
from a pipeline type job in Jenkins thanks to a dedicated pipeline method.

Below is an example of a simple pipeline using the calling method to the orchestrator :

node {
stage 'Stage 1 : sanity check'
echo 'OK pipelines work in the test instance'
stage 'Stage 2 : steps check'
configFileProvider([configFile(

fileId: '600492a8-8312-44dc-ac18-b5d6d30857b4',
targetLocation: 'testWorkflow.json'
)]) {

def workflow_id = runSquashTFWorkflow(
workflowPathName:'testWorkflow.json',
workflowTimeout: '20S',
serverName:'defaultServer'
)
echo "We just ran The Squash Orchestrator workflow $workflow_id"

}
}

The runSquashTFWorkflow method allows the transmission of an EPAC to the orchestrator for an execution.

It uses 3 parameters :

• workflowPathName : The path to the file containing the EPAC. In the present case, the file is injected
through the Config File Provider plugin, but it is also possible to get it through other means (retrieval from a
SCM, on the fly generation in a file, . . .).

• workflowTimeout : Timeout on the actions execution. This timeout will activate for example if an envi-
ronment is unreachable (or doesn’t exist), or if an action is not found by an actionProvider. It is to be adapted
depending on the expected duration of the execution of the various tests in the EPAC.

• serverName : Name of the Squash Orchestrator server to use. This name is defined in the Squash Orches-
trator servers space of the Jenkins configuration.

2.3 Squash TM test execution plan retrieval with a PEAC

• Prerequisites

• Integration of the Squash TM execution plan retrieval step into an EPAC

• Squash TM parameters to exploit in a Robot Framework automated test

• Results publication in Squash TM at the end of the execution

16 Chapter 2. Squash DEVOPS

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Squash DEVOPS gives you the possibility to retrieve an execution plan for automated tests defined in Squash TM
with an EPAC. The EPAC can be triggered by a Jenkins pipeline (see the corresponding page of this guide).

2.3.1 Prerequisites

In order to retrieve an execution plan from Squash TM with an EPAC, you need to perform the following tasks in
Squash TM :

• Create a user belonging to the Test automation server group.

• Create an execution plan (iteration or test suite) containing at least one ITPI linked to an automated test case, as
described in the Squash AUTOM user guide (see here).

2.3.2 Integration of the Squash TM execution plan retrieval step into an EPAC

In order to retrieve an execution plan from Squash TM with an EPAC, you need to call the corresponding generator
action.

Here is a simple example of an EPAC in Json format allowing the retrieval of a Squash TM execution plan :

{
"apiVersion": "opentestfactory.org/v1alpha1",
"kind": "Workflow",
"metadata": {

"name": "Simple Workflow"
},
"defaults": {

"runs-on":"ssh"
},
"jobs": {

"explicitJob": {
"runs-on":"ssh",
"generator":"tm.squashtest.org/tm.generator@v1",
"with": {

"testPlanUuid":"1e2ae123-6b67-44b2-b229-274ea17ad489",
"testPlanType":"Iteration",
"squashTMUrl":"https://mySquashTMInstance.org/squash",
"squashTMAutomatedServerLogin":"tfserver",
"squashTMAutomatedServerPassword":"tfserver"

}
}

}
}

A Squash TM generator step must contain the following parameters :

2.3. Squash TM test execution plan retrieval with a PEAC 17

Squash Autom & Squash Devops, Release 1.0.0-alpha1

• testPlanType : Defines the type of test plan to retrieve in Squash TM. Only the values Iteration and
TestSuite are accepted.

• testPlanUuid : This is the UUID of the requested test plan. It can be found in the Description panel by
clicking on the Information tab of the iteration or test suite in Squash TM.

• squashTMUrl : URL of the targeted Squash TM.

• squashTMAutomatedServerLogin : Name of the Test automation server group user to log into
Squash TM.

• squashTMAutomatedServerPassword : Password of the Test automation server group user to log into
Squash TM.

[Optional fields] :

• tagLabel : Specific to the Premium version - It refers to the name of the tag type custom field on which the
test cases to retrieve are to be filtered. It is not possible to specify more than one.

• tagValue : Specific to the Premium version - It refers to the value of the tag type custom field on which
the test cases to retrieve are to be filtered. It is possible to specify multiple ones separated by “|” (Example:
value1|value2). There has to be at least one value specified for the test case to be taken into account.

Warning: If one of the two tagLabel or tagValue fields is present, the other must also be specified.

2.3.3 Squash TM parameters to exploit in a Robot Framework automated test

By executing an EPAC retrieving a Squash TM execution plan, Squash TM passes various informations on ITPIs
that can be exploited in a Robot Framework test case.

Nature of the Squash TM parameters to exploit

The exploitable Squash TM parameters in a Robot Framework script will differ depending on the usage of a Squash
DEVOPS Community or Squash DEVOPS Premium licence.

Here is a table of the exploitable parameters :

18 Chapter 2. Squash DEVOPS

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Nature Key Community Premium

Name of the dataset DSNAME

Parameter of a dataset DS_[name]

Reference of a test case TC_REF

Test case CUF TC_CUF_[code]

Iteration CUF IT_CUF_[code]

Campaign CUF CPG_CUF_[code]

Test suite CUF TS_CUF_[code]

Legend :

• CUF : Custom Field

• [code] : Value of the “Code” field of a CUF

• [name] : Name of the parameter as filled in Squash TM

Usage of Squash TM parameters in a Robot Framework test case

When executing a Squash TM automated test case with Robot Framework, it is possible to exploit Squash TM
parameters inside the test case.

In order to achieve this, you need to follow these steps :

• Install on the environment(s) where the Robot Framework execution takes place the squash-tf-services python
library. It is accessible through the pip package management and can be installed by executing the following
command line :

python -m pip install squash-tf-services

• Import the library inside the .robot file in the Settings section :

Library squash_tf.TFParamService

• You can then retrieve the value of a Squash TM parameter by calling the following keyword :

Get Param <parameter key>

Here is an example of a Robot Framework test case exploiting Squash TM parameters :

2.3. Squash TM test execution plan retrieval with a PEAC 19

Squash Autom & Squash Devops, Release 1.0.0-alpha1

2.3.4 Results publication in Squash TM at the end of the execution

The nature of the results published in Squash TM at the end of the execution will depend on the usage of a Squash
AUTOM Community or Squash AUTOM Premium licence.

Please refer to the Squash AUTOM 1.0.0.alpha1 user guide for more informations (see here).

This guide will show you the various possibilities offered by the version 1.0.0.alpha1 of Squash DEVOPS.

Warning: This version is intended to be used as a POC and therefore not in a production context (notably wth a
Squash TM whose database is new or a copy of an existing one).

This 1.0.0.alpha1 version provides the following components :

• Squash TM Generator Micro-service for the Squash Orchestrator : it is a micro-service for the Squash Or-
chestrator allowing the retrieval of a Squash TM test execution within an EPAC (Execution Plan «as code»).
Please refer to the Squash AUTOM user guide for more informations on the Squash Orchestrator and the
EPAC.

• Test Plan Retriever for Squash TM : this plugin for Squash TM allows the sending to the Squash Orches-
trator of details about a Squash TM execution plan.

• Squash DEVOPS plugin for Jenkins : this plugin for Jenkins facilitates the sending of an EPAC to the
Squash Orchestrator from a Jenkins pipeline.

20 Chapter 2. Squash DEVOPS

	Squash AUTOM
	Installation Guide
	Piloting automated tests executions with an EPAC (Execution Plan «as code»)
	Piloting automated tests executions from Squash TM

	Squash DEVOPS
	Installation Guide
	Calling the Squash Orchestrator from a Jenkins pipeline
	Squash TM test execution plan retrieval with a PEAC

