
Squash Autom & Squash Devops
Release 1.0.0-alpha1

squashtest

Mar 25, 2021

CONTENTS

1 Squash AUTOM 3
1.1 Installation Guide . 3
1.2 Piloting automated tests executions with an EPAC (Execution Plan «as code») 4
1.3 Piloting automated tests executions from Squash TM . 4

2 Squash DEVOPS 25
2.1 Installation Guide . 25
2.2 Calling the Squash Orchestrator from a Jenkins pipeline . 26
2.3 Squash TM test execution plan retrieval with a PEAC . 28

i

ii

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Squash AUTOM is a set of components for the management of your automated tests’ executions.

Squash DEVOPS is a set of components for the integration to your continuous integration pipeline of your automated
functional tests’ executions.

CONTENTS 1

Squash Autom & Squash Devops, Release 1.0.0-alpha1

2 CONTENTS

CHAPTER

ONE

SQUASH AUTOM

1.1 Installation Guide

• Squash Orchestrator

• Result Publisher Plugin for Squash TM

1.1.1 Squash Orchestrator

The Squash Orchestrator is available as Docker image on DockerHub (squashtest/squash-
orchestrator:1.0.0.alpha2).

The deployment procedure can be found in the Squash Orchestrator documentation (Squash Orchestrator Documen-
tation – 1.0.0.alpha2, .pdf version) downloadable at https://www.squashtest.com/community-download.

1.1.2 Result Publisher Plugin for Squash TM

The plugin exists in a Community version (squash.tm.rest.result.publisher.community-1.0.0.alpha2.jar) freely avail-
able, or a Premium version (squash.tm.rest.result.publisher.premium-1.0.0.alpha2.jar) available on request.

For details on the installation, please refer to the installation protocol of a Squash TM plugin
(https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2—installation-of-squash-
tm/7—jira-plug-in).

Warning: This plugin is compatible with version 1.22.2.RELEASE of Squash TM.

3

https://www.squashtest.com/community-download
https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2---installation-of-squash-tm/7---jira-plug-in
https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2---installation-of-squash-tm/7---jira-plug-in

Squash Autom & Squash Devops, Release 1.0.0-alpha1

1.2 Piloting automated tests executions with an EPAC (Execution
Plan «as code»)

Squash AUTOM allows the redaction of an execution plan in a format specific to the Squash Orchestrator, the
EPAC (Execution Plan «as code»), in order to orchestrate with precision the execution of automated tests outside of a
test repository.

You can find more information regarding the redaction of an EPAC in the Squash Orchestrator documentation
(Squash Orchestrator Documentation – 1.0.0.alpha2, .pdf version) downloadable from https://www.squashtest.com/
community-download.

1.3 Piloting automated tests executions from Squash TM

• Squash TM test case automation

• Test plan execution from Squash TM

• Results publication after a Squash TM test plan execution

1.3.1 Squash TM test case automation

Note: This page describes the common operations to all supported test frameworks in this version. You can access
the automation specifics for each technology directly with the following links :

• Cucumber

• Cypress

• JUnit

• Robot Framework

• SoapUI

4 Chapter 1. Squash AUTOM

https://www.squashtest.com/community-download
https://www.squashtest.com/community-download

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Without using the Squash automation workflow

For a test case to be usable by the Squash Orchestrator, its Automation panel in the Information tab of the test case
page must be correctly filled :

• Automated test technology : A dropdown list allowing you to choose the technology used for the
execution of a test case. In this version, only Robot Framework, Junit, Cucumber, Cypress and SoapUi are
functioning.

• Source code repository URL : The address of the source code repository where the project is located,
as referenced in the Source code management servers area of the Administration.

• Automated test reference : This is the location of the automated test within the project. This reference
must follow the format specific to the test technology being used (see here).

Using the Squash automation workflow

Regular test case

For a test case to be usable by the Squash Orchestrator, it must be automated in the Automation Workspace by filling
three columns :

• Auto. test tech. : A dropdown list allowing you to choose the technology used for the execution of a
test case. In this version, only Robot Framework and Junit are functioning.

• Scm URL : The address of the source code repository where the project is located.

• Auto. test ref. : This is the location of the automated test within the project. This reference must follow
the format specific to the test technology used (see here).

BDD or Gherkin test case

The information of the Automation panel is automatically filled during the transmission of a BDD or Gherkin script to
a remote source code repository hosting service. It can also be modified by the user at any moment.

1.3. Piloting automated tests executions from Squash TM 5

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Squash TM parameters exploitation

When a Squash TM execution plan is launched (through an EPAC or directly from the campaign workspace),
Squash TM will transmit various information on ITPI that can be exploited by a Cucumber, Cypress, or Robot Frame-
work test case. Details of this functionality can be found on the corresponding used technology section

Automation frameworks specifics

Automation with Cucumber

1. Test reference

Note: In this version of Squash AUTOM, it is not possible to select a specific scenario in a .feature file containing
several ones : every scenario in the file are therefore executed together. The result of each executed Squash TM test
case is calculated by taking into account the individual results of each scenario included in the bound file :

• If at least one scenario has an Error status (in case of a technical issue), the status of the execution will be
Blocked.

• If at least one scenario fails functionally and none of the other has an Error status, the status of the execution
will be Failed.

• If all scenarios succeed, the status of the execution will be Success.

In order to bind a Squash TM test case to a Cucumber automated test, the content of the Automated test reference
field of the Automation panel of a test case must have the following format :

[1] / [2]

With :

• [1] : Name of the project on the source code repository.

• [2] : Path and name of the Cucumber test file, from the root of the project (with the .feature extension).

2. Nature of the exploitable Squash TM parameters

Squash AUTOM and Squash DEVOPS are able to use the name of a Squash TM dataset as a tag value to use for
the execution of a specific subset of a Cucumber feature.

Both Community and Premium versions can use dataset names.

3. Squash TM parameters usage

When executing a Squash TM automated test case with Cucumber, it is possible to exploit the Squash TM dataset
name in order to execute a specific dataset of a Cucumber scenario.

In order to achieve this, you’ll have to follow these steps :

• Fill the datasets in the Parameters tab of the test case in Squash TM.

• Create in a Cucumber scenario as many example table as there are dataset in Squash TM test case. Annotate
them with a tag corresponding to the name of a Squash TM dataset.

6 Chapter 1. Squash AUTOM

Squash Autom & Squash Devops, Release 1.0.0-alpha1

• Create one line of elements in each example table to set scenario’s parameters values for the dataset.

Below is an example of a Cucumber test file and the corresponding Squash TM test case automation :

1.3. Piloting automated tests executions from Squash TM 7

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Automation with Cypress

1. Test reference

Note: In this version of Squash AUTOM, it is not possible to select a specific scenario in a .spec.js file containing
several ones : every scenario in the file are therefore executed together. The result of each executed Squash TM test
case is calculated by taking into account the individual results of each scenario included in the bound file :

• If at least one scenario has an Error status (in case of a technical issue), the status of the execution will be
Blocked.

• If at least one scenario fails functionally and none of the other has an Error status, the status of the execution
will be Failed.

• If all scenarios succeed, the status of the execution will be Success.

In order to bind a Squash TM test case to a Cypress automated test, the content of the Automated test reference field
of the Automation panel of a test case must have the following format :

[1] / [2]

With :

• [1] : Name of the project on the source code repository.

• [2] : Path and name of the Cypress test file, from the root of the project (with the .spec.js extension).

8 Chapter 1. Squash AUTOM

Squash Autom & Squash Devops, Release 1.0.0-alpha1

2. Nature of the exploitable Squash TM parameters

The exploitable Squash TM parameters in a Cypress script will differ depending on whether you’re using the Com-
munity or Premium version of Squash DEVOPS.

Here is a table showing the exploitable parameters :

Nature Key Community Premium

Name of the dataset DSNAME

Dataset parameter DS_[name]

Test case reference TC_REF

Test case CUF TC_CUF_[code]

Iteration CUF IT_CUF_[code]

Campaign CUF CPG_CUF_[code]

Test suite CUF TS_CUF_[code]

Legend :

• CUF : Custom Field

• [code] : Value of a CUF’s “Code” field

• [name] : Parameter name as filled in Squash TM

3. Squash TM parameters usage

When executing a Squash TM automated test case with Cypress, it is possible to exploit the Squash TM parameters
inside the test.

In order to achieve this, you’ll have to follow these steps :

• Create custom fields in Squash TM and bind them to the project bearing the test plan to execute.

• Make sure that the code fields of the parameters correspond to the names of the existing environment variables
present in the Cypress script.

Note: Squash TM adds a prefix to the code of the transmitted custom field. Make sure to take it into account. Please
refer to the Squash TM documentation for more information.

1.3. Piloting automated tests executions from Squash TM 9

https://sites.google.com/a/henix.fr/wiki-squash-tm/administrator-guide/05---custom-field-administration

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Below is an example of a Cypress test file and the corresponding Squash TM test case automation :

Automation with JUnit

Test reference

In order to bind a Squash TM test case to a JUnit automated test, the content of the Automated test reference field of
the Automation panel of a test case must have the following format :

[1] / [2] # [3]

With :

• [1] : Name of the project on the source code repository.

• [2] : Qualified name of the test class.

• [3] : Name of the method to test in the test class.

10 Chapter 1. Squash AUTOM

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Below is an example of a test class and the corresponding Squash TM test case automation :

Automation with Robot Framework

1. Test reference

In order to bind a Squash TM test case to a Robot Framework automated test, the content of the Automated test
reference field of the Automation panel of a test case must have the following format :

[1] / [2] # [3]

With :

• [1] : Name of the project on the source code repository.

• [2] : Path and name of the Robot Framework test, from the root of the project (with the .robot extension).

• [3] : Name of the test case to execute in the .robot file.

1.3. Piloting automated tests executions from Squash TM 11

Squash Autom & Squash Devops, Release 1.0.0-alpha1

2. Nature of the exploitable Squash TM parameters

The exploitable Squash TM parameters in a Robot Framework script will differ depending on whether you’re using
the Community or Premium version of Squash DEVOPS.

Here is a table showing the exploitable parameters :

Nature Key Community Premium

Name of the dataset DSNAME

Dataset parameter DS_[name]

Test case reference TC_REF

Test case CUF TC_CUF_[code]

Iteration CUF IT_CUF_[code]

Campaign CUF CPG_CUF_[code]

Test suite CUF TS_CUF_[code]

Legend :

• CUF : Custom Field

• [code] : Value of a CUF’s “Code” field

• [name] : Parameter name as filled in Squash TM

3. Squash TM parameters usage

When executing a Squash TM automated test case with Robot Framework, it is possible to exploit the Squash TM
parameters inside the test.

In order to achieve this, you’ll have to follow these steps :

• Create custom fields in Squash TM and bind them to the project bearing the test plan to execute.

• Install the squash-tf-services python library on the environment where the Robot Framework execution takes
place. It is accessible through the pip package management and can be installed by executing the following
command line :

python -m pip install squash-tf-services

• Import the library inside the .robot file in the Settings section :

Library squash_tf.TFParamService

• You can then retrieve the value of a Squash TM parameter by calling the following keyword :

12 Chapter 1. Squash AUTOM

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Get Param <parameter key>

Below is an example of a Robot Framework test file and the corresponding Squash TM test case automation :

Automation with SoapUI

Test reference

In order to bind a Squash TM test case to a SoapUI automated test, the content of the Automated test reference field
of the Automation panel of a test case must have the following format :

[1] / [2] # [3] # [4]

With :

• [1] : Name of the project on the source code repository.

1.3. Piloting automated tests executions from Squash TM 13

Squash Autom & Squash Devops, Release 1.0.0-alpha1

• [2] : Path and name of the SoapUI test file, from the root of the project (with the .xml extension).

• [3] : Name of the TestSuite containing the test case.

• [4] : Name of the test case to execute.

Below is an example of a SoapUI test file and the corresponding Squash TM test case automation :

1.3.2 Test plan execution from Squash TM

Squash Orchestrator server declaration

In order to manually launch an execution plan from Squash TM, the Squash Orchestrator server that will execute
the automated tests in the suitable environments has to be declared. It is done in the Automation servers space of the
Administration :

14 Chapter 1. Squash AUTOM

Squash Autom & Squash Devops, Release 1.0.0-alpha1

• Name : The name of server, as it will appear in the Test Case workspace.

• Type : Select squashAutom in the dropdown list.

• Url : The address of the Squash Orchestrator Receptionist.

Warning: The Squash Orchestrator event bus service must be accessible by the same url as the Receptionnist,
on port 38368.

Once the server is created, you can set an authentication token.

1.3. Piloting automated tests executions from Squash TM 15

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Note: A token is mandatory for the execution of automated tests from Squash TM. If the automation server does not
require authentication token, you still have to set some value in Squash TM.

Automated suite execution

Steps to run an automated test plan in Squash TM are the usual ones:

• Get to the execution plan of the selected Iteration or Test Suite.

• Run the test using one of the button on the screen below :

• An Overview of automated test executions popup shows up.

Note: The execution overview popup contains a new section displaying the ongoing executions performed by the

16 Chapter 1. Squash AUTOM

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Squash Orchestrator. However, the state of the executions are not updated once launched in the current version.

1.3.3 Results publication after a Squash TM test plan execution

Independently from the means used to trigger a test plan execution (from Squash TM or a Jenkins pipeline), the kind
of results published in Squash TM at the end of the execution of a test plan will differ depending on your using a
Squash AUTOM Community or Squash AUTOM Premium licence.

Squash AUTOM Community

After the execution of a Squash TM test plan (iteration or test suite), the following information is updated :

• ITPIs status update.

• Automated suite status update.

• The Allure type report containing all the results from the executed tests.

• The various ITPIs execution reports are accessible from the Automated Suites tab of the iteration or test suite :

1.3. Piloting automated tests executions from Squash TM 17

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Note: All the results from the automated suite are compiled in an Allure type report, available in the list of reports as
a .tar archive.

However, in version 1.0.0.alpha2, the Robot Framework test results can’t be included in this report. If the automated
suite contains only Robot Framework tests, the archive will be generated with an empty report.

For more information on the means to exploit and customize the Allure report, please refer to the Allure documentation.

This, however, doesn’t happen :

• Creation of a new execution for each executed ITPI.

18 Chapter 1. Squash AUTOM

https://docs.qameta.io/allure/

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Squash AUTOM Premium

If you are using the Squash AUTOM Premium components, you have access to two types of results publication :

• Light (default value).

• Full.

The choice of publication type is operated on a project basis by accessing the configuration of the Squash TM Result
Publisher plugin from the Plugins tab of your project page, inside the Administration Tab :

Light results publication

By choosing the “Light” results publication, the following information is updated after the execution of a Squash TM
test plan (iteration or test suite) :

• ITPIs status update.

• Automated suite status update.

• The Allure type report containing all the results from the executed tests.

• The various ITPIs execution reports are accessible from the Automated Suites tab of the iteration or test suite :

1.3. Piloting automated tests executions from Squash TM 19

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Note: All the results from the automated suite are compiled in an Allure type report, available in the list of reports as
a .tar archive.

However, in version 1.0.0.alpha2, the Robot Framework test results can’t be included in this report. If the automated
suite contains only Robot Framework tests, the archive will be generated with an empty report.

For more information on the means to exploit and customize the Allure report, please refer to the Allure documentation.

This, however, doesn’t happen :

• Creation of a new execution for each executed ITPI.

20 Chapter 1. Squash AUTOM

https://docs.qameta.io/allure/

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Full results publication

By choosing the “Full” results publication, the following information is updated after the execution of a Squash TM
test plan (iteration or test suite) :

• ITPIs status update.

• Creation of a new execution for each executed ITPI.

• Automated suite status update.

• The Allure type report containing all the results from the executed tests.

• The execution reports of the various executions can be accessed from the Automated Suites tab of the iteration
or test suite, or from the execution page (the reports are present in the attached files) :

1.3. Piloting automated tests executions from Squash TM 21

Squash Autom & Squash Devops, Release 1.0.0-alpha1

Note: All the results from the automated suite are compiled in an Allure type report, available in the list of reports as
a .tar archive.

However, in version 1.0.0.alpha2, the Robot Framework test results can’t be included in this report. If the automated
suite contains only Robot Framework tests, the archive will be generated with an empty report.

For more information on the means to exploit and customize the Allure report, please refer to the Allure documentation.

This guide will show you the various possibilities offered by the version 1.0.0.alpha2 of Squash AUTOM.

Warning: This version is intended to be used as a POC and therefore not in a production context (notably with a
Squash TM whose database is new or a copy of an existing one).

This 1.0.0.alpha2 version provides two components :

• Squash Orchestrator : it is a tool composed of a set of micro-services to be used by sending an execution plan
written in a specific format, the EPAC (Execution plan «as code»), in order to orchestrate automated tests.

22 Chapter 1. Squash AUTOM

https://docs.qameta.io/allure/

Squash Autom & Squash Devops, Release 1.0.0-alpha1

• Result Publisher Plugin for Squash TM : this plugin for Squash TM allows the return of information towards
Squash TM at the end of the execution of a Squash TM execution plan by the Squash Orchestrator.

• Squash AUTOM Plugin for Squash TM : this plugin for Squash TM allows to execute automated test from
Squash TM with Squash Orchestrator.

1.3. Piloting automated tests executions from Squash TM 23

Squash Autom & Squash Devops, Release 1.0.0-alpha1

24 Chapter 1. Squash AUTOM

CHAPTER

TWO

SQUASH DEVOPS

2.1 Installation Guide

• Squash Orchestrator

• Test Plan Retriever plugin for Squash TM

• Squash DEVOPS plugin for Jenkins

2.1.1 Squash Orchestrator

This micro-service exists as a Squash DEVOPS Community and a Squash DEVOPS Premium version. It is in-
cluded in the Docker image of the Squash Orchestrator. For further details on the deployment of the Squash Orches-
trator and the activation of the Squash TM Generator micro-service in Community or Premium version, please
refer to the Squash Orchestrator documentation (Squash Orchestrator Documentation – 1.0.0.alpha2, .pdf version)
downloadable from https://www.squashtest.com/community-download.

2.1.2 Test Plan Retriever plugin for Squash TM

The plugin exists in a Community version (squash.tm.rest.test.plan.retriever.community-1.0.0.alpha2.jar) freely
available, or a Premium version (squash.tm.rest.test.plan.retriever.premium-1.0.0.alpha2.jar) available on request.

For details on the installation, please refer to installation protocol of a Squash TM plugin
(https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2—installation-of-squash-
tm/7—jira-plug-in).

Warning: This plugin is compatible with version 1.22.2.RELEASE of Squash TM.

25

https://www.squashtest.com/community-download
https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2---installation-of-squash-tm/7---jira-plug-in
https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2---installation-of-squash-tm/7---jira-plug-in

Squash Autom & Squash Devops, Release 1.0.0-alpha1

2.1.3 Squash DEVOPS plugin for Jenkins

The plugin is freely available from https://www.squashtest.com/community-download, as a .hpi file (squash-devops-
1.0.0.alpha2.hpi).

To install it, submit the plugin in the Upload Plugin area accessible by the Advanced tab of the Plugin Manager in
Jenkins configuration :

Warning: This plugin is compatible with version 2.164.1 or higher of Jenkins

2.2 Calling the Squash Orchestrator from a Jenkins pipeline

• Configuring a Squash Orchestrator in Jenkins

• Call to the Squash Orchestrator from a Jenkins pipeline

2.2.1 Configuring a Squash Orchestrator in Jenkins

To access the configuration of the Squash Orchestrator, you first need to go the Configure System page accessible in
the System Configuration space of Jenkins, through the Manage Jenkins tab :

A panel named Squash Orchestrator servers will then be available :

26 Chapter 2. Squash DEVOPS

https://www.squashtest.com/community-download

Squash Autom & Squash Devops, Release 1.0.0-alpha1

• Server id : This ID is automatically generated and can’t be modified. It is not used by the user.

• Server name : This name is defined by the user. It is the one that will be mentioned in the pipeline script of
the workflow to be executed.

• Receptionist endpoint URL : The address of the receptionist micro-service of the orchestrator, with
its port as defined at the launch of the orchestrator. Please refer to the Squash Orchestrator documentation for
further details.

• Workflow Status endpoint URL : The address of the observer micro-service of the orchestrator, with
its port as defined at the launch of the orchestrator. Please refer to the Squash Orchestrator documentation for
further details.

• Credential : Secret text type Jenkins credential containing a JWT Token allowing authentication to the
orchestrator. Please refer to the Squash Orchestrator documentation for further details on secure access to the
orchestrator.

• Workflow Status poll interval : This parameter sets the interval between each update of the work-
flow status.

• Workflow creation timeout : Timeout on the reception of the EPAC by the receptionist on the orches-
trator side.

2.2.2 Call to the Squash Orchestrator from a Jenkins pipeline

Once there is at least one Squash Orchestrator configured in Jenkins, it is possible to call the Squash Orchestrator
from a pipeline type job in Jenkins thanks to a dedicated pipeline method.

Below is an example of a simple pipeline using the calling method to the orchestrator :

node {
stage 'Stage 1 : sanity check'
echo 'OK pipelines work in the test instance'

(continues on next page)

2.2. Calling the Squash Orchestrator from a Jenkins pipeline 27

Squash Autom & Squash Devops, Release 1.0.0-alpha1

(continued from previous page)

stage 'Stage 2 : steps check'
configFileProvider([configFile(

fileId: '600492a8-8312-44dc-ac18-b5d6d30857b4',
targetLocation: 'testWorkflow.json'
)]) {

def workflow_id = runSquashWorkflow(
workflowPathName:'testWorkflow.json',
workflowTimeout: '20S',
serverName:'defaultServer'
)
echo "We just ran The Squash Orchestrator workflow $workflow_id"

}
}

The runSquashWorkflow method allows the transmission of an EPAC to the orchestrator for an execution.

It uses 3 parameters :

• workflowPathName : The path to the file containing the EPAC. In the present case, the file is injected
through the Config File Provider plugin, but it is also possible to get it through other means (retrieval from a
SCM, on the fly generation in a file, . . .).

• workflowTimeout : Timeout on the actions execution. This timeout will activate for example if an envi-
ronment is unreachable (or doesn’t exist), or if an action is not found by an actionProvider. It is to be adapted
depending on the expected duration of the execution of the various tests in the EPAC.

• serverName : Name of the Squash Orchestrator server to use. This name is defined in the Squash Orches-
trator servers space of the Jenkins configuration.

2.3 Squash TM test execution plan retrieval with a PEAC

• Prerequisites

• Integration of the Squash TM execution plan retrieval step into an EPAC

• Squash TM parameters to exploit in an automated test

• Results publication in Squash TM at the end of the execution

Squash DEVOPS gives you the possibility to retrieve an execution plan for automated tests defined in Squash TM
with an EPAC. The EPAC can be triggered by a Jenkins pipeline (see the corresponding page of this guide).

28 Chapter 2. Squash DEVOPS

Squash Autom & Squash Devops, Release 1.0.0-alpha1

2.3.1 Prerequisites

In order to retrieve an execution plan from Squash TM with an EPAC, you need to perform the following tasks in
Squash TM :

• Create a user belonging to the Test automation server group.

• Create an execution plan (iteration or test suite) containing at least one ITPI linked to an automated test case, as
described in the Squash AUTOM user guide (see here).

2.3.2 Integration of the Squash TM execution plan retrieval step into an EPAC

In order to retrieve an execution plan from Squash TM with an EPAC, you need to call the corresponding generator
action.

Here is a simple example of an EPAC in Json format allowing the retrieval of a Squash TM execution plan :

{
"apiVersion": "opentestfactory.org/v1alpha1",
"kind": "Workflow",
"metadata": {

"name": "Simple Workflow"
},
"defaults": {

"runs-on":"ssh"
},
"jobs": {

"explicitJob": {
"runs-on":"ssh",
"generator":"tm.squashtest.org/tm.generator@v1",
"with": {

"testPlanUuid":"1e2ae123-6b67-44b2-b229-274ea17ad489",
"testPlanType":"Iteration",
"squashTMUrl":"https://mySquashTMInstance.org/squash",
"squashTMAutomatedServerLogin":"tfserver",
"squashTMAutomatedServerPassword":"tfserver"

}
}

}
}

A Squash TM generator step must contain the following parameters :

• testPlanType : Defines the type of test plan to retrieve in Squash TM. Only the values Iteration and
TestSuite are accepted.

• testPlanUuid : This is the UUID of the requested test plan. It can be found in the Description panel by
clicking on the Information tab of the iteration or test suite in Squash TM.

• squashTMUrl : URL of the targeted Squash TM.

• squashTMAutomatedServerLogin : Name of the Test automation server group user to log into
Squash TM.

• squashTMAutomatedServerPassword : Password of the Test automation server group user to log into
Squash TM.

2.3. Squash TM test execution plan retrieval with a PEAC 29

Squash Autom & Squash Devops, Release 1.0.0-alpha1

[Optional fields] :

• tagLabel : Specific to the Premium version - It refers to the name of the tag type custom field on which the
test cases to retrieve are to be filtered. It is not possible to specify more than one.

• tagValue : Specific to the Premium version - It refers to the value of the tag type custom field on which
the test cases to retrieve are to be filtered. It is possible to specify multiple ones separated by “|” (Example:
value1|value2). There has to be at least one value specified for the test case to be taken into account.

Warning: If one of the two tagLabel or tagValue fields is present, the other must also be specified.

2.3.3 Squash TM parameters to exploit in an automated test

By executing an EPAC retrieving a Squash TM execution plan, Squash TM passes various pieces of information on
ITPIs that can be exploited in a Cucumber, Cypress or Robot Framework test case.

For more information, please refer to the Squash TM parameters exploitation section of the Squash AUTOM docu-
mentation, as well as the dedicated section on the desired automation framework.

2.3.4 Results publication in Squash TM at the end of the execution

The nature of the results published in Squash TM at the end of the execution will depend on the usage of a Squash
AUTOM Community or Squash AUTOM Premium licence.

Please refer to the Squash AUTOM 1.0.0.alpha2 user guide for more information (see here).

This guide will show you the various possibilities offered by the version 1.0.0.alpha2 of Squash DEVOPS.

Warning: This version is intended to be used as a POC and therefore not in a production context (notably with a
Squash TM whose database is new or a copy of an existing one).

This 1.0.0.alpha2 version provides the following components :

• Squash TM Generator Micro-service for the Squash Orchestrator : it is a micro-service for the Squash Or-
chestrator allowing the retrieval of a Squash TM test execution within an EPAC (Execution Plan «as code»).
Please refer to the Squash AUTOM user guide for more information on the Squash Orchestrator and the EPAC.

• Test Plan Retriever for Squash TM : this plugin for Squash TM allows the sending of details about a
Squash TM execution plan to the Squash Orchestrator.

• Squash DEVOPS plugin for Jenkins : this plugin for Jenkins facilitates the sending of an EPAC to the
Squash Orchestrator from a Jenkins pipeline.

30 Chapter 2. Squash DEVOPS

Squash Autom & Squash Devops, Release 1.0.0-alpha1

2.3. Squash TM test execution plan retrieval with a PEAC 31

	Squash AUTOM
	Installation Guide
	Piloting automated tests executions with an EPAC (Execution Plan «as code»)
	Piloting automated tests executions from Squash TM

	Squash DEVOPS
	Installation Guide
	Calling the Squash Orchestrator from a Jenkins pipeline
	Squash TM test execution plan retrieval with a PEAC

