

Warning

This site is obsolete, the Squash AUTOM and Squash DEVOPS documentation is now stored in https://autom-devops-en.doc.squashtest.com/.

Welcome to Squash AUTOM & Squash DEVOPS documentation!

Squash AUTOM is a set of components for the management of your automated tests’ executions.

Squash DEVOPS is a set of components for the integration to your continuous integration pipeline
of your automated functional tests’ executions.

	Squash AUTOM

	Squash DEVOPS

	FAQ

Warning

This site is obsolete, the Squash AUTOM and Squash DEVOPS documentation is now stored in https://autom-devops-en.doc.squashtest.com/.

Squash AUTOM

This guide will show you the various possibilities offered by the version 1.0.0.RELEASE of Squash AUTOM.

Warning

This version is intended to be used as a POC and therefore not in a production context (notably with a
Squash TM whose database is new or a copy of an existing one).

This 1.0.0.RELEASE version provides the following components :

	Squash Orchestrator : it is a tool composed of a set of micro-services to be used by sending an execution plan written
in a specific format, the EPAC (Execution plan «as code»), in order to orchestrate automated tests.

	OpenTestFactory Agent : agent to allow HTTP communication between a Squash Orchestrator and a test execution environment.
It is mandatory for Agilitest test execution.

	Result Publisher Plugin for Squash TM : this plugin for Squash TM allows the return of information towards
Squash TM at the end of the execution of a Squash TM execution plan by the Squash Orchestrator.

	Squash AUTOM Plugin for Squash TM : this plugin for Squash TM allows to execute automated test from Squash TM
with Squash Orchestrator.

Installation Guide

	Squash Orchestrator

	Docker image of Squash AUTOM exclusives micro-services

	OpenTestFactory Agent

	Result Publisher Plugin for Squash TM

	Result Publisher Plugin for Squash TM

Squash Orchestrator

Overview

Squash Orchestrator enables you to run and coordinate the various components of the test execution chain
(execution environments, automata, reporting, etc.).
It is based on the OpenTestFactory orchestrator and add a set of micro-services to extend its possibilities,
such as running Squash TM execution plan or reporting to Squash TM.

Installation

Squash Orchestrator is a set of services running together. They may or may not run on the same machine,
and they may or may not be started at the same time.

The only prerequisite is that the EventBus, the service they use to communicate together, is available when they launch.

To ease the installation of the orchestrator, an ‘all-in-one’ docker image is provided. It contains all core services and
Squash specifics services.

To get the latest image of Squash Orchestrator, use the following command:

docker pull squashtest/squash-orchestrator:latest

Usage

Configuring the ‘all-in-one’ image

Here is a simple command that will start the Squash Orchestrator so that it can use one existing execution environment,
with self-generated trusted keys (which is not recommended in a production setup):

docker run -d \
 --name orchestrator \
 -p 7774:7774 \
 -p 7775:7775 \
 -p 7776:7776 \
 -p 38368:38368 \
 -e SSH_CHANNEL_HOST=the_environment_ip_or_hostname \
 -e SSH_CHANNEL_USER=user \
 -e SSH_CHANNEL_PASSWORD=secret \
 -e SSH_CHANNEL_TAGS=ssh,linux,robotframework \
 squashtest/squash-orchestrator:latest

It exposes the following services on the corresponding ports:

	receptionnist (port 7774)

	observer (port 7775)

	killswitch (port 7776)

	eventbus (port 38368)

Run the image in Premium mode

If you have a Premium license for Squash AUTOM and have deployed the Premium version of the Result Publisher Squash TM plugin,
you must run Squash Orchestrator in Premium mode in order to have access to Premium behavior for result publishing to Squash TM.
In order to do that, you have to add the following parameter in the Squash Orchestrator’s run command: -e SQUASH_LICENCE_TYPE=premium

For a more detailed Squash Orchestrator configuration, you can check the OpenTestFactory orchestrator documentation [https://opentestfactory.github.io/orchestrator/installation/] on which Squash Orchestrator is based on.

Docker image of Squash AUTOM exclusives micro-services

Overview

Squash AUTOM Premium license give you access to a Docker image with Squash Orchestrator micro-services giving you
the following functionalities:

	Agilitest test execution management

Installation

To install the Docker image of Squash AUTOM exclusives micro-services, you must get the compressed image from Squash
support service and then use the following command:

docker load -i squash-autom-premium-1.0.1.tar.gz

Usage

To run the Docker image of Squash AUTOM exclusives micro-services, the following command must be used:

docker run -e BUS_HOST=<IP or DNS name of event bus> \
 -e BUS_PORT=<port> -e BUS_TOKEN=<JWT token> \
 --volume /path/to/truststore:/etc/squashtf/ \
 docker.squashtest.org/squashtest/squash-autom-premium:1.0.1

with :

	BUS_HOST (mandatory) : IP address or DNS name of EventBus service of the Squash Orchestrator to communicate with.

	BUS_PORT (mandatory) : port of EventBus service of the Squash Orchestrator to communicate with.

	BUS_TOKEN (optionnal) : JWT token accepted by the EventBus service of the Squash Orchestrator to communicate with.

	–volume : create a volume to a truststore with trusted public keys that can be used to validate JWT tokens.
The volume must be created if JWT token validation is required to exchange messages between micro-services.

OpenTestFactory Agent

Overview

OpenTestFactory agent is a process that runs on an execution environment. That process will contact the Squash Orchestrator
at regular intervals, looking for some orders to execute. If there is a pending order, the agent will do as asked
and send the result back to the orchestrator.

Installation

The OpenTestFactory agent is a Python application that is installed in the execution environment.
It requires Python 3.8 or higher. It works on Linux, MacOS, and Windows.

The agent is a simple script. It only has one external dependency, the well known requests library
(it will be installed if not already present on the execution environment).

To install it, use the following command:

pip3 install --upgrade opentf-agent

You can test your installation by running the following command:

opentf-agent --help

Usage

Summary

$ opentf-agent --help
usage: opentf-agent [-h] --tags TAGS --host HOST [--port PORT] [--path_prefix PATH_PREFIX] [--token TOKEN] [--encoding ENCODING] [--script_path SCRIPT_PATH]
 [--workspace_dir WORKSPACE_DIR] [--name NAME] [--polling_delay POLLING_DELAY] [--liveness_probe LIVENESS_PROBE] [--retry RETRY] [--debug]

OpenTestFactory Agent

optional arguments:
 -h, --help show this help message and exit
 --tags TAGS a comma-separated list of tags (e.g. windows,robotframework)
 --host HOST target host with protocol (e.g. https://example.local)
 --port PORT target port (default to 24368)
 --path_prefix PATH_PREFIX
 target context path (default to no context path)
 --token TOKEN token
 --encoding ENCODING encoding on the console side (defaults to utf-8)
 --script_path SCRIPT_PATH
 where to put temporary files (defaults to current directory)
 --workspace_dir WORKSPACE_DIR
 where to put workspaces (defaults to current directory)
 --name NAME agent name (defaults to "test agent")
 --polling_delay POLLING_DELAY
 polling delay in seconds (default to 5)
 --liveness_probe LIVENESS_PROBE
 liveness probe in seconds (default to 300 seconds)
 --retry RETRY how many time to try joining host (default to 5,
 0 = try forever)
 --debug whether to log debug informations.

Example

Assuming there is a Squash Orchestrator running on orchestrator.example.com, with a known token stored in the
TOKEN environment variable, the following command will register the Windows-based execution environment
and will possibly receive commands targeting windows and/or robotframework:

chcp 65001
opentf-agent --tags windows,robotframework --host https://orchestrator.example.com/ --token %TOKEN%

The agent will poll the orchestrator every 5 seconds, and will execute the received commands.
The chcp command sets the console to Unicode. It is Windows-specific. It is not mandatory but may be needed
depending on the test framework available in the execution environment.

Result Publisher Plugin for Squash TM

Overview

The plugin is used with Squash Orchestrator to allow reporting to Squash TM at the end of a Squash TM automated test
plan execution by Squash Orchestrator.

The plugin exists in a Community version (squash.tm.rest.result.publisher.community-1.0.0.RELEASE.jar) freely
available, or a Premium version (squash.tm.rest.result.publisher.premium-1.0.0.RELEASE.jar) available on request.

Installation

For details on the installation, please refer to the installation protocol of a Squash TM plugin
(https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2—installation-of-squash-tm/7—jira-plug-in [https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2---installation-of-squash-tm/7---jira-plug-in]).

Warning

This plugin is compatible with version 1.22.2.RELEASE or higher of Squash TM.

Result Publisher Plugin for Squash TM

Overview

The plugin is used with Squash Orchestrator to allow automated test execution launch from Squash TM.

The plugin exists in a Community version (plugin.testautomation.squashautom.community-1.0.0.RELEASE.jar) freely
available, or a Premium version (plugin.testautomation.squashautom.premium-1.0.0.RELEASE.jar) available on request.

Installation

For details on the installation, please refer to the installation protocol of a Squash TM plugin
(https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2—installation-of-squash-tm/7—jira-plug-in [https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2---installation-of-squash-tm/7---jira-plug-in]).

Warning

This plugin is compatible with version 1.22.2.RELEASE or higher of Squash TM.

Piloting automated tests executions with an EPAC (Execution Plan «as code»)

Squash AUTOM allows the redaction of an execution plan in a format specific to the Squash Orchestrator, the EPAC
(Execution Plan «as code»), in order to orchestrate with precision the execution of automated tests outside of a test
repository.

You can find more information regarding the redaction of an EPAC in the Squash Orchestrator documentation
(Squash Orchestrator Documentation – 1.0.0.alpha2, .pdf version) downloadable from
https://www.squashtest.com/community-download.

Piloting automated tests executions from Squash TM

	Squash TM test case automation

	Test plan execution from Squash TM

	Results publication after a Squash TM test plan execution

Note

To pilote automated tests executions from Squash TM, following components are required:

	Squash TM

	Squash Orchestrator

	Result Publisher Plugin for Squash TM

	Squash AUTOM plugin for Squash TM

	In case of Agilitest test execution : OpenTestFactory agent Agilitest execution environment

Squash TM test case automation

Note

This page describes the common operations to all supported test frameworks in this version. You can access
the automation specifics for each technology directly with the following links :

	Agilitest

	Cucumber

	Cypress

	JUnit

	Robot Framework

	SoapUI

Without using the Squash automation workflow

For a test case to be usable by the Squash Orchestrator, its Automation panel in the Information tab of the test
case page must be correctly filled :

[image: ../_images/tc-automated-space.png]

	Automated test technology : A dropdown list allowing you to choose the technology used for the execution of a
test case. In this version, only Robot Framework, Junit, Cucumber, Cypress and SoapUi are functioning.

	Source code repository URL : The address of the source code repository where the project is located, as referenced
in the Source code management servers area of the Administration.

	Automated test reference : This is the location of the automated test within the project. This reference must
follow the format specific to the test technology being used (see here).

Using the Squash automation workflow

Regular test case

For a test case to be usable by the Squash Orchestrator, it must be automated in the Automation Workspace by filling
three columns :

[image: ../_images/autom-workspace-columns.png]

	Auto. test tech. : A dropdown list allowing you to choose the technology used for the execution of a
test case. In this version, only Robot Framework and Junit are functioning.

	Scm URL : The address of the source code repository where the project is located.

	Auto. test ref. : This is the location of the automated test within the project. This reference must
follow the format specific to the test technology used (see here).

BDD or Gherkin test case

The information of the Automation panel is automatically filled during the transmission of a BDD or Gherkin script
to a remote source code repository hosting service. It can also be modified by the user at any moment.

Squash TM parameters exploitation

When a Squash TM execution plan is launched (through an EPAC or directly from the campaign workspace), Squash TM will
transmit various information on ITPI that can be exploited by a Cucumber, Cypress, or Robot Framework test case.
Details of this functionality can be found on the corresponding used technology section

Automation frameworks specifics

Automation with Agilitest

1. Test reference

In order to bind a Squash TM test case to an Agilitest automated test, the content of the Automated test
reference field of the Automation panel of a test case must have the following format :

[1] / [2]

With :

	[1] : Name of the project on the source code repository.

	[2] : Path and name of the ActionTestScript file, from the root of the project (with the .ats extension).

Warning

The ATS script must be located in src/main/ats/* , as in any regular ATS project architecture.

2. Nature of the exploitable Squash TM parameters

The exploitable Squash TM parameters in an ActionTestScript script will differ depending on whether you’re using the
Community or Premium version of Squash DEVOPS.

Here is a table showing the exploitable parameters :

	Nature

	Key

	Community

	Premium

	Name of the dataset

	DSNAME

	[image: ../_images/ok.jpg]

	[image: ../_images/ok.jpg]

	Dataset parameter

	DS_[name]

	[image: ../_images/ok.jpg]

	[image: ../_images/ok.jpg]

	Test case reference

	TC_REF

	[image: ../_images/ok.jpg]

	[image: ../_images/ok.jpg]

	Test case CUF

	TC_CUF_[code]

	[image: ../_images/ok.jpg]

	[image: ../_images/ok.jpg]

	Iteration CUF

	IT_CUF_[code]

	[image: ../_images/ko.jpg]

	[image: ../_images/ok.jpg]

	Campaign CUF

	CPG_CUF_[code]

	[image: ../_images/ko.jpg]

	[image: ../_images/ok.jpg]

	Test suite CUF

	TS_CUF_[code]

	[image: ../_images/ko.jpg]

	[image: ../_images/ok.jpg]

Legend :

	CUF : Custom Field

	[code] : Value of a CUF’s “Code” field

	[name] : Parameter name as filled in Squash TM

3. Squash TM parameters usage

When executing a Squash TM automated test case with Agilitest, it is possible to exploit the Squash TM parameters inside
the test.

In order to achieve this, you’ll have to follow these steps :

	Create custom fields in Squash TM and bind them to the project bearing the test plan to execute.

	Make sure that the code fields of the parameters correspond to the names of the existing environment variables
present in the Cypress script.

Note

Squash TM adds a prefix to the code of the transmitted custom field. Make sure to take it into account.
Please refer to the Squash TM
documentation [https://sites.google.com/a/henix.fr/wiki-squash-tm/administrator-guide/05---custom-field-administration]
for more information.

Below is an example of an Agilitest test file and the corresponding Squash TM test case automation :

[image: ../_images/agilitest-test-with-params-1.png]

[image: ../_images/agilitest-test-with-params-2.png]

Automation with Cucumber

1. Test reference

Note

If a scenario name is not specified, the result of each executed Squash TM test case is calculated
by taking into account the individual results of each scenario included in the bound file :

	If at least one scenario has an Error status (in case of a technical issue), the status of the execution
will be Blocked.

	If at least one scenario fails functionally and none of the other has an Error status, the status of the
execution will be Failed.

	If all scenarios succeed, the status of the execution will be Success.

In order to bind a Squash TM test case to a Cucumber automated test, the content of the Automated test
reference field of the Automation panel of a test case must have the following format :

[1] / [2] # [3] # [4]

With :

	[1] : Name of the project on the source code repository.

	[2] : Path and name of the Cucumber test file, from the root of the project (with the .feature extension).

	[3] : feature name as specified in the Cucumber test file.

	[4] : scenario name as specified in the Cucumber test file.

2. Nature of the exploitable Squash TM parameters

Squash AUTOM and Squash DEVOPS are able to use the name of a Squash TM dataset as a tag value to use
for the execution of a specific subset of a Cucumber feature.

Both Community and Premium versions can use dataset names.

3. Squash TM parameters usage

When executing a Squash TM automated test case with Cucumber, it is possible to exploit the Squash TM dataset name
in order to execute a specific dataset of a Cucumber scenario.

In order to achieve this, you’ll have to follow these steps :

	Fill the datasets in the Parameters tab of the test case in Squash TM.

	Create in a Cucumber scenario as many example table as there are dataset in Squash TM test case. Annotate them with
a tag corresponding to the name of a Squash TM dataset.

	Create one line of elements in each example table to set scenario’s parameters values for the dataset.

Below is an example of a Cucumber test file and the corresponding Squash TM test case automation :

[image: ../_images/cucumber-test-with-tags-1.png]

[image: ../_images/cucumber-test-with-tags-2.png]

[image: ../_images/cucumber-test-with-tags-3.png]

Automation with Cypress

1. Test reference

Note

In this version of Squash AUTOM, it is not possible to select a specific scenario in a .spec.js file
containing several ones : every scenario in the file are therefore executed together. The result of each
executed Squash TM test case is calculated by taking into account the individual results of each scenario
included in the bound file :

	If at least one scenario has an Error status (in case of a technical issue), the status of the execution
will be Blocked.

	If at least one scenario fails functionally and none of the other has an Error status, the status of the
execution will be Failed.

	If all scenarios succeed, the status of the execution will be Success.

In order to bind a Squash TM test case to a Cypress automated test, the content of the Automated test
reference field of the Automation panel of a test case must have the following format :

[1] / [2]

With :

	[1] : Name of the project on the source code repository.

	[2] : Path and name of the Cypress test file, from the root of the project (with the .spec.js extension).

2. Nature of the exploitable Squash TM parameters

The exploitable Squash TM parameters in a Cypress script will differ depending on whether you’re using the Community
or Premium version of Squash DEVOPS.

Here is a table showing the exploitable parameters :

	Nature

	Key

	Community

	Premium

	Name of the dataset

	DSNAME

	[image: ../_images/ok.jpg]

	[image: ../_images/ok.jpg]

	Dataset parameter

	DS_[name]

	[image: ../_images/ok.jpg]

	[image: ../_images/ok.jpg]

	Test case reference

	TC_REF

	[image: ../_images/ok.jpg]

	[image: ../_images/ok.jpg]

	Test case CUF

	TC_CUF_[code]

	[image: ../_images/ok.jpg]

	[image: ../_images/ok.jpg]

	Iteration CUF

	IT_CUF_[code]

	[image: ../_images/ko.jpg]

	[image: ../_images/ok.jpg]

	Campaign CUF

	CPG_CUF_[code]

	[image: ../_images/ko.jpg]

	[image: ../_images/ok.jpg]

	Test suite CUF

	TS_CUF_[code]

	[image: ../_images/ko.jpg]

	[image: ../_images/ok.jpg]

Legend :

	CUF : Custom Field

	[code] : Value of a CUF’s “Code” field

	[name] : Parameter name as filled in Squash TM

3. Squash TM parameters usage

When executing a Squash TM automated test case with Cypress, it is possible to exploit the Squash TM parameters inside
the test.

In order to achieve this, you’ll have to follow these steps :

	Create custom fields in Squash TM and bind them to the project bearing the test plan to execute.

	Make sure that the code fields of the parameters correspond to the names of the existing environment variables
present in the Cypress script.

Note

Squash TM adds a prefix to the code of the transmitted custom field. Make sure to take it into account.
Please refer to the Squash TM
documentation [https://sites.google.com/a/henix.fr/wiki-squash-tm/administrator-guide/05---custom-field-administration]
for more information.

Below is an example of a Cypress test file and the corresponding Squash TM test case automation :

[image: ../_images/cypress-test-with-params-1.png]

[image: ../_images/cypress-test-with-params-2.png]

Automation with JUnit

Test reference

In order to bind a Squash TM test case to a JUnit automated test, the content of the Automated test
reference field of the Automation panel of a test case must have the following format :

[1] / [2] # [3]

With :

	[1] : Name of the project on the source code repository.

	[2] : Qualified name of the test class.

	[3] : Name of the method to test in the test class.

Below is an example of a test class and the corresponding Squash TM test case automation :

[image: ../_images/junit-test-with-param-1.png]

[image: ../_images/junit-test-with-param-2.png]

Automation with Robot Framework

1. Test reference

In order to bind a Squash TM test case to a Robot Framework automated test, the content of the Automated test
reference field of the Automation panel of a test case must have the following format :

[1] / [2] # [3]

With :

	[1] : Name of the project on the source code repository.

	[2] : Path and name of the Robot Framework test, from the root of the project (with the .robot extension).

	[3] : Name of the test case to execute in the .robot file.

2. Nature of the exploitable Squash TM parameters

The exploitable Squash TM parameters in a Robot Framework script will differ depending on whether you’re using the
Community or Premium version of Squash DEVOPS.

Here is a table showing the exploitable parameters :

	Nature

	Key

	Community

	Premium

	Name of the dataset

	DSNAME

	[image: ../_images/ok.jpg]

	[image: ../_images/ok.jpg]

	Dataset parameter

	DS_[name]

	[image: ../_images/ok.jpg]

	[image: ../_images/ok.jpg]

	Test case reference

	TC_REF

	[image: ../_images/ok.jpg]

	[image: ../_images/ok.jpg]

	Test case CUF

	TC_CUF_[code]

	[image: ../_images/ok.jpg]

	[image: ../_images/ok.jpg]

	Iteration CUF

	IT_CUF_[code]

	[image: ../_images/ko.jpg]

	[image: ../_images/ok.jpg]

	Campaign CUF

	CPG_CUF_[code]

	[image: ../_images/ko.jpg]

	[image: ../_images/ok.jpg]

	Test suite CUF

	TS_CUF_[code]

	[image: ../_images/ko.jpg]

	[image: ../_images/ok.jpg]

Legend :

	CUF : Custom Field

	[code] : Value of a CUF’s “Code” field

	[name] : Parameter name as filled in Squash TM

3. Squash TM parameters usage

When executing a Squash TM automated test case with Robot Framework, it is possible to exploit the Squash TM
parameters inside the test.

In order to achieve this, you’ll have to follow these steps :

	Create custom fields in Squash TM and bind them to the project bearing the test plan to execute.

	Install the squash-tf-services python library on the environment where the Robot Framework execution takes place.
It is accessible through the pip package management and can be installed by executing the following command line :

python -m pip install squash-tf-services

	Import the library inside the .robot file in the Settings section :

Library squash_tf.TFParamService

	You can then retrieve the value of a Squash TM parameter by calling the following keyword :

Get Param <parameter key>

Below is an example of a Robot Framework test file and the corresponding Squash TM test case automation :

[image: ../_images/robot-test-with-param-1.png]

[image: ../_images/robot-test-with-param-2.png]

Automation with SoapUI

Test reference

In order to bind a Squash TM test case to a SoapUI automated test, the content of the Automated test
reference field of the Automation panel of a test case must have the following format :

[1] / [2] # [3] # [4]

With :

	[1] : Name of the project on the source code repository.

	[2] : Path and name of the SoapUI test file, from the root of the project (with the .xml extension).

	[3] : Name of the TestSuite containing the test case.

	[4] : Name of the test case to execute.

Below is an example of a SoapUI test file and the corresponding Squash TM test case automation :

[image: ../_images/soapui-test-1.png]

[image: ../_images/soapui-test-2.png]

Test plan execution from Squash TM

Squash Orchestrator server declaration

In order to manually launch an execution plan from Squash TM, the Squash Orchestrator server that will execute the
automated tests in the suitable environments has to be declared. It is done in the Automation servers space of the
Administration :

[image: ../_images/automation_servers_declaration.png]

	Name : The name of server, as it will appear in the Test Case workspace.

	Type : Select squashAutom in the dropdown list.

	Url : The address of the Squash Orchestrator Receptionist.

Warning

The Squash Orchestrator event bus service must be accessible by the same url as the Receptionnist, on port 38368.

Once the server is created, you can set an authentication token.

[image: ../_images/token-en.png]

Note

A token is mandatory for the execution of automated tests from Squash TM.
If the automation server does not require authentication token, you still have to set some value in Squash TM.

Automated suite execution

Steps to run an automated test plan in Squash TM are the usual ones:

	Get to the execution plan of the selected Iteration or Test Suite.

	Run the test using one of the button on the screen below :

[image: ../_images/test-plan-en.png]

	An Overview of automated test executions popup shows up.

Note

The execution overview popup contains a new section displaying the ongoing executions performed by the
Squash Orchestrator. However, the state of the executions are not updated once launched in the current
version.

Results publication after a Squash TM test plan execution

Independently from the means used to trigger a test plan execution (from Squash TM or a Jenkins pipeline), the kind
of results published in Squash TM at the end of the execution of a test plan will differ depending on your using a
Squash AUTOM Community or Squash AUTOM Premium licence.

Squash AUTOM Community

After the execution of a Squash TM test plan (iteration or test suite), the following information is updated :

	ITPIs status update.

	Automated suite status update.

	The Allure type report containing all the results from the executed tests.

	The various ITPIs execution reports are accessible from the Automated Suites tab of the iteration or test suite :

[image: ../_images/automated-suite-tab.png]

Note

All the results from the automated suite are compiled in an Allure type report, available in the list of
reports as a .tar archive.

For more information on the means to exploit and customize the Allure report, please refer to the
Allure documentation [https://docs.qameta.io/allure/].

This, however, doesn’t happen :

	Creation of a new execution for each executed ITPI.

Squash AUTOM Premium

If you are using the Squash AUTOM Premium components, you have access to two types of results publication :

	Light (default value).

	Full.

The choice of publication type is operated on a project basis by accessing the configuration of the
Squash TM Result Publisher plugin from the Plugins tab of your project page, inside the Administration Tab :

[image: ../_images/plugin-complete-switch.png]

Light results publication

By choosing the “Light” results publication, the following information is updated after the execution of a
Squash TM test plan (iteration or test suite) :

	ITPIs status update.

	Automated suite status update.

	The Allure type report containing all the results from the executed tests.

	The various ITPIs execution reports are accessible from the Automated Suites tab of the iteration or test suite :

[image: ../_images/automated-suite-tab.png]

Note

All the results from the automated suite are compiled in an Allure type report, available in the list of
reports as a .tar archive.

For more information on the means to exploit and customize the Allure report, please refer to the
Allure documentation [https://docs.qameta.io/allure/].

This, however, doesn’t happen :

	Creation of a new execution for each executed ITPI.

Full results publication

By choosing the “Full” results publication, the following information is updated after the execution of a
Squash TM test plan (iteration or test suite) :

	ITPIs status update.

	Creation of a new execution for each executed ITPI.

	Automated suite status update.

	The Allure type report containing all the results from the executed tests.

	The execution reports of the various executions can be accessed from the Automated Suites tab of the iteration or
test suite, or from the execution page (the reports are present in the attached files) :

[image: ../_images/iteration-execution-tab.png]

[image: ../_images/iteration-execution-detail.png]

Note

All the results from the automated suite are compiled in an Allure type report, available in the list of
reports as a .tar archive.

For more information on the means to exploit and customize the Allure report, please refer to the
Allure documentation [https://docs.qameta.io/allure/].

Warning

This site is obsolete, the Squash AUTOM and Squash DEVOPS documentation is now stored in https://autom-devops-en.doc.squashtest.com/.

Squash DEVOPS

This guide will show you the various possibilities offered by the version 1.0.0.RELEASE of Squash DEVOPS.

This 1.0.0.RELEASE version provides the following components :

	Squash TM Generator Micro-service for the Squash Orchestrator : it is a micro-service for the Squash Orchestrator
allowing the retrieval of a Squash TM test execution within an EPAC (Execution Plan «as code»). Please refer to the
Squash AUTOM user guide for more information on the Squash Orchestrator and the EPAC.

	Test Plan Retriever for Squash TM : this plugin for Squash TM allows the sending of details about a Squash TM
execution plan to the Squash Orchestrator.

	Squash DEVOPS plugin for Jenkins : this plugin for Jenkins facilitates the sending of an EPAC to the
Squash Orchestrator from a Jenkins pipeline.

Installation Guide

	Squash Generator Service

	Test Plan Retriever plugin for Squash TM

	Squash DEVOPS plugin for Jenkins

Squash Generator Service

Overview

The micro-service allows Squash TM automated test plan retrieval when executing an EPaC with Squash Orchestrator.

Installation

It is included in the*Docker* image of the Squash Orchestrator.
For further details on Squash Orchestrator installation, please consult the dedicated section.

To run Squash Orchestrator Docker image with Squash DEVOPS Premium version of the Squash Generator Service, parameter
-e SQUASH_LICENCE_TYPE=premium must be set in the docker run command of Squash Orchestrator.

Test Plan Retriever plugin for Squash TM

Overview

The plugin allows Squash TM automated test plan retrieval by a Squash Orchestrator server.

Installation

The plugin exists in a Community version (squash.tm.rest.test.plan.retriever.community-1.0.0.RELEASE.jar) freely
available, or a Premium version (squash.tm.rest.test.plan.retriever.premium-1.0.0.RELEASE.jar) available on request.

For details on the installation, please refer to installation protocol of a Squash TM plugin
(https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2—installation-of-squash-tm/7—jira-plug-in [https://sites.google.com/a/henix.fr/wiki-squash-tm/installation-and-exploitation-guide/2---installation-of-squash-tm/7---jira-plug-in]).

Warning

This plugin is compatible with version 1.22.2.RELEASE or higher of Squash TM.

Squash DEVOPS plugin for Jenkins

Overview

The plugin make calls to Squash Orchestrator inside a pipeline easier.

Installation

The plugin is freely available from https://www.squashtest.com/community-download, as a .hpi file
(squash-devops-1.0.0.hpi).

To install it, submit the plugin in the Upload Plugin area accessible by the Advanced tab of the Plugin Manager in
Jenkins configuration :

[image: ../_images/squash-devops-plugin-jenkins-upload.png]

Warning

This plugin is compatible with version 2.164.1 or higher of Jenkins

Calling the Squash Orchestrator from a Jenkins pipeline

	Configuring a Squash Orchestrator in Jenkins

	Call to the Squash Orchestrator from a Jenkins pipeline

Configuring a Squash Orchestrator in Jenkins

To access the configuration of the Squash Orchestrator, you first need to go the Configure System page accessible in
the System Configuration space of Jenkins, through the Manage Jenkins tab :

[image: ../_images/jenkins-system-configuration.png]

A panel named Squash Orchestrator servers will then be available :

[image: ../_images/jenkins-squash-orchestrator-server.png]

	Server id : This ID is automatically generated and can’t be modified. It is not used by the user.

	Server name : This name is defined by the user. It is the one that will be mentioned in the pipeline script of the
workflow to be executed.

	Receptionist endpoint URL : The address of the receptionist micro-service of the orchestrator, with its port as
defined at the launch of the orchestrator. Please refer to the Squash Orchestrator documentation for further details.

	Workflow Status endpoint URL : The address of the observer micro-service of the orchestrator, with its port as
defined at the launch of the orchestrator. Please refer to the Squash Orchestrator documentation for further details.

	Credential : Secret text type Jenkins credential containing a JWT Token allowing authentication to the
orchestrator. Please refer to the Squash Orchestrator documentation for further details on secure access to the
orchestrator.

	Workflow Status poll interval : This parameter sets the interval between each update of the workflow status.

	Workflow creation timeout : Timeout on the reception of the EPAC by the receptionist on the orchestrator side.

Call to the Squash Orchestrator from a Jenkins pipeline

Once there is at least one Squash Orchestrator configured in Jenkins, it is possible to call the Squash Orchestrator
from a pipeline type job in Jenkins thanks to a dedicated pipeline method.

Below is an example of a simple pipeline using the calling method to the orchestrator :

node {
 stage 'Stage 1 : sanity check'
 echo 'OK pipelines work in the test instance'
 stage 'Stage 2 : steps check'
 configFileProvider([configFile(
fileId: '600492a8-8312-44dc-ac18-b5d6d30857b4',
targetLocation: 'testWorkflow.json'
)]) {
 def workflow_id = runSquashWorkflow(
 workflowPathName:'testWorkflow.json',
 workflowTimeout: '20S',
 serverName:'defaultServer'
)
 echo "We just ran The Squash Orchestrator workflow $workflow_id"
 }
}

The runSquashWorkflow method allows the transmission of an EPAC to the orchestrator for an execution.

It uses 3 parameters :

	workflowPathName : The path to the file containing the EPAC. In the present case, the file is injected through the
Config File Provider plugin, but it is also possible to get it through other means (retrieval from a SCM, on the fly
generation in a file, …).

	workflowTimeout : Timeout on the actions execution. This timeout will activate for example if an environment is
unreachable (or doesn’t exist), or if an action is not found by an actionProvider. It is to be adapted depending on
the expected duration of the execution of the various tests in the EPAC.

	serverName : Name of the Squash Orchestrator server to use. This name is defined in the Squash Orchestrator servers
space of the Jenkins configuration.

Squash TM test execution plan retrieval with a PEAC

	Prerequisites

	Integration of the Squash TM execution plan retrieval step into an EPAC

	Squash TM parameters to exploit in an automated test

	Results publication in Squash TM at the end of the execution

Squash DEVOPS gives you the possibility to retrieve an execution plan for automated tests defined in Squash TM with
an EPAC. The EPAC can be triggered by a Jenkins pipeline (see the corresponding page of this
guide).

Note

In order for the functionnality to work, Test Plan Retriever plugin and Result Publisher plugin
are required on targeted Squash TM.

Prerequisites

In order to retrieve an execution plan from Squash TM with an EPAC, you need to perform the following tasks in
Squash TM :

	Create a user belonging to the Test automation server group.

	Create an execution plan (iteration or test suite) containing at least one ITPI linked to an automated test case, as
described in the Squash AUTOM user guide (see here).

Integration of the Squash TM execution plan retrieval step into an EPAC

In order to retrieve an execution plan from Squash TM with an EPAC, you need to call the corresponding generator action.

Here is a simple example of an EPAC in Json format allowing the retrieval of a Squash TM execution plan :

{
 "apiVersion": "opentestfactory.org/v1alpha1",
 "kind": "Workflow",
 "metadata": {
 "name": "Simple Workflow"
 },
 "defaults": {
 "runs-on":"ssh"
 },
 "jobs": {
 "explicitJob": {
 "runs-on":"ssh",
 "generator":"tm.squashtest.org/tm.generator@v1",
 "with": {
 "testPlanUuid":"1e2ae123-6b67-44b2-b229-274ea17ad489",
 "testPlanType":"Iteration",
 "squashTMUrl":"https://mySquashTMInstance.org/squash",
 "squashTMAutomatedServerLogin":"tfserver",
 "squashTMAutomatedServerPassword":"tfserver"
 }
 }
 }
}

A Squash TM generator step must contain the following parameters :

	testPlanType : Defines the type of test plan to retrieve in Squash TM. Only the values Iteration and TestSuite
are accepted.

	testPlanUuid : This is the UUID of the requested test plan. It can be found in the Description panel by clicking
on the Information tab of the iteration or test suite in Squash TM.

	squashTMUrl : URL of the targeted Squash TM.

	squashTMAutomatedServerLogin : Name of the Test automation server group user to log into Squash TM.

	squashTMAutomatedServerPassword : Password of the Test automation server group user to log into Squash TM.

[Optional fields] :

	tagLabel : Specific to the Premium version - It refers to the name of the tag type custom field on which the
test cases to retrieve are to be filtered. It is not possible to specify more than one.

	tagValue : Specific to the Premium version - It refers to the value of the tag type custom field on which the
test cases to retrieve are to be filtered. It is possible to specify multiple ones separated by “|”
(Example: value1|value2). There has to be at least one value specified for the test case to be taken into account.

Warning

If one of the two tagLabel or tagValue fields is present, the other must also be specified.

Squash TM parameters to exploit in an automated test

By executing an EPAC retrieving a Squash TM execution plan, Squash TM passes various pieces of information on ITPIs
that can be exploited in a Cucumber, Cypress or Robot Framework test case.

For more information, please refer to the Squash TM parameters exploitation section of the
Squash AUTOM documentation, as well as the dedicated section on the desired automation framework.

Results publication in Squash TM at the end of the execution

The nature of the results published in Squash TM at the end of the execution will depend on the usage of a
Squash AUTOM Community or Squash AUTOM Premium licence.

Please refer to the Squash AUTOM 1.0.0.alpha2 user guide for more information (see here).

Warning

This site is obsolete, the Squash AUTOM and Squash DEVOPS documentation is now stored in https://autom-devops-en.doc.squashtest.com/.

FAQ

This section contains a set of FAQ about Squash AUTOM and Squash DEVOPS.

Available FAQ are:

	Generalities : FAQ about generalities on Squash AUTOM, Squash DEVOPS and consequences for Squash TF

FAQ : Generalities about Squash AUTOM and Squash DEVOPS

This FAQ answers question about why develop these new products, what does this mean for Squash TF and how will the
transition from Squash TF to S|squashautom| and Squash DEVOPS take place?

	Why develop two new products: Squash AUTOM et Squash DEVOPS?

	What is the model of Squash AUTOM and Squash DEVOPS?

	Can Squash AUTOM and Squash DEVOPS be used without Squash TM?

	Will new features for Squash TF be developed in the future?

	Does support for Squash TF end with the release of Squash AUTOM and Squash DEVOPS?

	Does my legacy of automated tests, previously run with Squash TF, need to be modified to be used with Squash AUTOM?

	Can I run SKF tests with Squash AUTOM and Squash DEVOPS?

	What do I need to do in Squash TM to run my automated execution plans with Squash AUTOM instead of Squash TF?

	Can I mix in the same execution plan automated test cases executed by Squash TF and test cases executed by Squash AUTOM?

	Do I need to have a Jenkins server to run my automated tests from Squash TM via Squash AUTOM?

	Can I launch my Squash TM automated execution plans from a Jenkins pipeline with Squash AUTOM and SQUASH DEVOPS?

Why develop two new products: Squash AUTOM et Squash DEVOPS?

The creation of Squash AUTOM and Squash DEVOPS is the result of a reflection on the evolution of automation practices
(growth of CI/CD and DevOps practices, more and more democratized use of containerization, multiplication of integration tools)
and on how the Squash software suite could be in line with them.

It emerged that Squash TF had architectural and other limitations for its adoption within the DevOps principles.

This is why we decided to develop a new tool for managing the execution of automated tests, and this tool must respect
the following principles:

	Micro-service architecture, particularly for deployment and usability reasons in DevOps environments.

	Separation between the functionalities allowing automation (for testers and automation engineers) and those allowing
the integration of automated tests (for the pipeline manager) within the DevOps plant.
This gave rise to 2 products named Squash AUTOM and Squash DEVOPS.

	Removal of the adhesion with Squash TM in order to make these two products independent of it.

What is the model of Squash AUTOM and Squash DEVOPS?

The model chosen is an “open core” model.

This model, which is the same as Squash TM, allows to offer two versions:

	A free Community version composed of an open source core and freemium modules. This version is fully functional
(unrestrained).

	A commercial version, with annual subscription, composed of the Community version and commercial plugins.
It brings additional value-added features, but not essential, as well as support.

Can Squash AUTOM and Squash DEVOPS be used without Squash TM?

Yes.

For both products, our goal is to bring value to companies or projects that do not use Squash TM:

	The use of Squash AUTOM “alone” thus makes it possible to unify/homogenize the use of various automatons
(Selenium, Cypress, SoapUI, Appium…) and various studios (Robot Framework, Cucumber, UFT, Agilitest…)
while generating a common reporting format (such as Allure).

	The use of Squash DEVOPS “alone” enables the orchestration of all automated tests, their integration into the DevOps
pipeline (CI/CD) and the posting of results to the recipients (the pipeline itself, the test asset tool or the
framework for reporting and aggregating test results).

Will new features for Squash TF be developed in the future?

No, there will be no new features developed for Squash TF.

We encourage you to make the transition from Squash TF to Squash AUTOM for the execution of your automated test assets
in order to take advantage of all the new features offered by Squash.

Nevertheless, the elements of Squash TF will remain available for download.
Likewise, the open source repositories will remain accessible.

Does support for Squash TF end with the release of Squash AUTOM and Squash DEVOPS?

No.

We will continue to provide support on Squash TF via the Squashtest forum and, for customers of the Squash AUTOM
commercial offer, via our support service.

Does my legacy of automated tests, previously run with Squash TF, need to be modified to be used with Squash AUTOM?

No.

The scripts/automated tests that you run via Squash TF can be used by Squash AUTOM without any modification.

Can I run SKF tests with Squash AUTOM and Squash DEVOPS?

You will not be able to do it with the version 1.0.0.RELEASE.

SKF test support will be available in a later version before the end of Q2 2021.

What do I need to do in Squash TM to run my automated execution plans with Squash AUTOM instead of Squash TF?

It is necessary to create a link between a Squash TM test case and your automated test according to the Squash AUTOM documentation.

This action is almost instantaneous and can be done, at the same time, for several Squash TM Gherkin or BDD test cases
using the Git plugin. For the other test cases, an action on each test case will be necessary according to the Squash AUTOM
documentation.

The link action between a Squash TM test case and an automated test for an execution with Squash AUTOM is different
from the one for an execution with Squash TF.

Can I mix in the same execution plan automated test cases executed by Squash TF and test cases executed by Squash AUTOM?

Yes.

In order to ease the transition, it is perfectly possible to have test cases from a project running Squash TF and
test cases from a project running Squash AUTOM within the same Squash TM execution plan.

Do I need to have a Jenkins server to run my automated tests from Squash TM via Squash AUTOM?

No.

The specific Jenkins jobs required to run automated tests from Squash TM via Squash TF are no longer a prerequisite
for running from Squash TM via Squash AUTOM.

With Squash AUTOM, execution is handled by the Squash Orchestrator, a specific component of Squash AUTOM.

Can I launch my Squash TM automated execution plans from a Jenkins pipeline with Squash AUTOM and SQUASH DEVOPS?

Yes.

Running a Squash TM execution plan from a Jenkins pipeline is a new feature of Squash DEVOPS compared to Squash TF and
requires the implementation of jobs as described in the Squash DEVOPS documentation.

Index

 _static/autom/robot-test-with-param-2.png
Test Case Workspace

O v Global filter Administration My account (admin) Logout

Created on : 2021/03/09 04:43 (admin)

Updated on : 2021/03/09 12:38 (admin)
B * Test project-1

Test steps | Parameters | Attachments | Executions
- 5 Cucumber

- 5 Cypress
- 2 Junit Description {1D = 2471
4 Robot Framen

Format

Classic

Refe

ce: 42

‘Automation

Automated test technology :

Robot Framework

Source code repository URL : https://my-scm/myrepo/robot-parm-demo (master)

Automated test reference : robot-parm-demo/parmiTest.robot#Parameter Test

_static/autom/soapui-test-1.png
S2xml-version="1.0"

encoding="UTF-8"&%

2 Fl<con:soapui-project. id="9b9b79eb-37b7-471a-a803-d99bb63c95A7" - activeEnvironment="Default" - name="OpenWeatherTest" rescurceRoot=""soapui-version="5.6.0" xmlns:con="http://cviware.con/soapui/config">
2 <con:settings/>
< <con:interface xsi con:RestService" . id="2c0e5fc9-3aa0-478£-8621-3c51£d5bbe20" wadlVersion="http://wadl.dev.jiava.net/2009/02" https://samples.openweathermap.org” - rrest
62 <con:interface xsi: con:RestService" id="£b60c829-5dbl-4cch-8af7-86a465339223" wadlVersion="http://wadl.dev.java.net/2009/02" https://samples.openweathermap.org” - rest
142 <con:interface xsi con:RestService" id="b5a239dB-cc96-46ab-b353-b140c994d30c" wadlVersion="http://wadl.dev.iava.net/2009/02" https://samples.openweathermap.org” - rest
200 <con:interface xsi: con:RestService" id="14dda3c1-7b£7-40c0-8502-a03d08c2402c" wadlVersion="http://wadl.dev.iava.net/2009/02" https://samples.openweathermap.org” - rest
249 <con:interface xsi con:RestService" id="db0a5036-6379-47b0-be5d-132£533c1833" wadlVersion="http://wadl.dev.iava.net/2009/02" https://samples.openweathermap.org” - rest
317 <con:testSuite- id="55¢761da-c028-4203-96da-d5ac42809de0" -name="Forecastsuite">
3 <con:settings/>
3 <con: runType>SEQUENTIALS/con: runType>
320 <con:testCase- id="966925ac-c0b0-4807-b3a8-4417a638a516" - failonError="true" - failTestCascOnErrors="true" kecpScssion="false"
321 <con:settings/>
322 <con:testStep: type="restrequest” name="GetForecastValues" . id="d633¢a59-6985-4917-ac05-4b78b893bdc7">
368 <con:testStep type="restrequest' name="GetForecastSLA" id="10d1661a-44dc-4c52-a3b0-a1939963d92d">
3 ~<con:propertics/>
4 </con:testCase>
4 <con:testCase- id="084bf404-e84d-4981-a391-18ba542d582¢" - failonError="true" - failTestCascOnErrors="true" kecpScssion="false"- "MunchenForecastAssertError" scarchPropertics="true">
102 <con:settings/>
03 <con:testStep: type="restrequest . name="GetMunchenForecast" . id="d15baf8a-a304-45da-ad51-c12a408£c83a">
443 <con:propertics/>
aas </con:testCase>
445 <con:propertics/>
446 </con:testSuite>
447 <con: testSuite- id="ad7d5b87-95¢3-4013-bcad-££552720cc2c" - name="HistorySuite">

<con:testSuite. id="7ad04027-60d0-4670-a556-a57c55d95e46" name="UVAndAirPoll">

_static/autom/plugin-complete-switch.png
Configure the result publisher plugin

Test Project-1

Automated Executions

Choose your level of required information about automated executions run from a continuous integration tool:

Light @D Full

Light: to use if you launch your automated tests very often and want to limit your database size increase. When executing an
automated test plan, an automated suite is created but executions for test plan item are not.

Full: to use if you don't launch your automated tests very often or doesn't care about database size increase. \When an executing
automated test plan, an automated suite and one execution for each test plan item executed are created.

_static/autom/robot-test-with-param-1.png
woaaaewne O

robot-parm-demo / parmTestrobot I

+%s Setctings rx

Edit

Documentation Example of Squash TF parameter use.
Library squash_tf.TFParamservice
Zibrary conditionalfang.py 42

#%% Test Cases *nx

Parameter Test
[Documentation]
SiparmValue)
Hang If Not
Snould Be Equal

Tnis test hangs,

fails or passes depending on parameter value

Get Param TC_REFERENCE

Siparmvalue}
Siparmvalue}

a2

_images/iteration-execution-detail.png
Campaign Workspace [J v Global fiiter Administration My account _(_admin) Logout

Execution: #1 - test_case_cucumber

Dataset tagl
Auto, seript - (deleted)

‘Attributes

weight a-Low
Nature Undefined
Type Undefined

sub_res

nthe testcase) : 5

Verified requirements

Project Version ID Reference Requirement Criticality

No matching records found
Showing 0 to 0 of 0 entries

Custom fields
Result summary
‘Execution Script

Action Exp. Result Status Last Exec. User Comments At Run
No matching records found

Attachments " Upload Attachment Organize

_static/autom/test-plan-en.png
<< 1 €

2021/02/24 16:34 (admin)
2021/03/12 15:03 (admin)

Created on
Updated on

Information

#a Location

1 projetSquashAutom

Show entries

Button [Execute automat

. Mode

Ref.

Execution Plan

Test

tes | Rename

Run All the tests

¢ Wt ¢ Testsuite ¢

+ testAutom L -

Status

ready

%
success

0%

Button [Run automated tests]

Run Selected tests
ttion plan

® Remove from the ex

. Last executed

on s

User

Button
[start an executi

Click to display the options:
All and selection

_images/iteration-execution-tab.png
Campaign Workspace

4 [Folder Test T

4 @ Campaign Test 1

O v Global filter # Administration 2 My account (admin) © Logout

<< 1 - Iteration

Created on : 2021/03/09 16:35 (admin)
Updated on : 2021/03/09 16:35 (admin)

. Last
Datasets 5 TELSUE siars o % user o exeauted on
Userver 2021/03/00
Lo - © possed 1005t 220005 @ @)
(tfserver) 1840
2021/03/09
tagt passed trserver 2921 (c]
tserver 2021/03/00
L - © possed 1005t 22000305 @ @)
(tfserver) 1840
2021/03/09
t202 passed trserver 292 6
Userver 2021/03/00
L tag3 = @ faled 0% tserver o0

(tfserver) 1640

_static/autom/token-en.png
‘Authentication protocol

token authentication

‘Authentication policy

Credentials

_images/cypress-test-with-params-1.png
$ master v cypressParamCalculator / cypress / integration / calculator.spec.js /<> Jump to ~ Go to file
Latest commit de767a1 on Jan 28 D) History

A1 contributor

22 lines (22 sloc) 536 Bytes Raw Beme 0 2 O

describe(*Caleulator’, () => {
it('add’,) = {

vara=s
var b = 12
expect(a + b).to.equal (parselnt(Cypress.env(’ CPG_CUF_add_result’)))
»
itCmit, O = {
vara =2
var b =4
expect(a * b).to.equal(parselnt(Cypress.env(* IT_CUF_mult_result’)))
»

it(su, O = {
var a = 10
varb =5
expect(a - b).to.equal (parselnt(Cypress.env(*'TC_CUF_sub_result’)))
»
itCdiv, O = {
var a = 10
varb =5
expect(a / b).to.equal (parselnt(Cypress.env(*TS_CUF_div_result’)))
»
»

_static/autom/soapui-test-2.png
Test Case Workspace

B
¢ £ Cucumber
- 5 Cypress
- 5 Junit
= Robot Framen
4 [Soapu

0 v Global filter Administration My account (admin) Logou

Created on : 2021/03/08 10:14 (admin)
Updated on : 2021/03/08 10:14 (admin)

Test steps | Parameters | Attachments | Execu

Description [1D - 2441

Format Classic

‘Automation

Automated test technology : S0apuI

Source code repository URL : https://my-scm/myrepo/soapuiOpenWeather (master)

Automated test reference : soapuiOpenWeather/OpenWeatherTest-soapui-project.xmlForecastSuite=ForecastSucess

_images/cypress-test-with-params-2.png
Test Case Workspace

B
I+ 5 Cucumber
4 Cypress
A
- 2 SoapUt

600

0 v Global filter Administration My account (admin) Logout|

Created on : 2021/03/08 10:14 (admin)
Updated on : 2021/03/08 10:15 (admin)

(B o | s | e
n [ID = 2421

Format Classic

Reference :
Description : (Click to edt...)

Status 1-Work in progress

Attributes

{ sub_result: 5 J
‘Automation
Automated test technology : Cypress
Source code repository URL : https://my-scm/myrepo/cypressParamCalculator (master)
Automated test reference : yp / / ec.js

Bl = Campaion Test 1 T

4 @ 1- Iteration - 1
@ test_suite_1

add_resul

4 @ Campaign Test 1
B8 % 1 - Tteration - 1|
@ test_suite_1

4 @ Campaign Test 1
5@ 1- Tteration - 1
9@ test_suite_1

div_result: 2

_static/autom/tc-automated-space.png
‘Automation

Automated test techrology : Robot Framework
Source code repository URL : https://my-scm/myrepo/my-repo (master)
Automated test reference : my-repo/test.robot=firstTestCase

_images/junit-test-with-param-1.png
package squash.tfauto;

import org.junit.jupiter.api.Assertions;
inport org.junit.jupiter.api.DisplayName;
inport org.junit.jupiter.api.Test;

@isplayliane("Calculator™)
public class CalculatorTest {

eTest
public void multFailure(){

int first = 2;

int second = 4;

Assertions.assertTrus((first*second)==6, "Le résultat du calcul est incorrect. " + First + * *

_images/junit-test-with-param-2.png
O v Global filter Administration My account (admin) Logout

Test Case Workspace

Created on : 2021/02/04 14:18 (admin)
Updated on : 2021/02/04 14:18 (admin)

Test steps | Parameters | Attachments | Executions

Description [1D - 240]

‘Automation

B * Test project-1

i [Test Folder a
348, 42 - test_case_robot_framework

Automated test technology : JUnit
Source code repository URL : https://my-scm/myrepo/junitCalc (master)

Automated test reference : junitCalc/squash.tfauto.CalculatorTest=multFailure

_images/jenkins-squash-orchestrator-server.png
Squash Orchestrator servers

Serverid

Server name.

Receptionist endpoint URL

Workflow Status endpoint URL

Credential

Workflow Status poll interval

Workflow creation timeout

46705135

defaultServer

hittpy//127.0.0.1:7774

hittpy//127.0.0.1:7775

none- v [eada~

ES

55

_static/devops/jenkins-squash-orchestrator-server.png
Squash Orchestrator servers

Serverid

Server name.

Receptionist endpoint URL

Workflow Status endpoint URL

Credential

Workflow Status poll interval

Workflow creation timeout

46705135

defaultServer

hittpy//127.0.0.1:7774

hittpy//127.0.0.1:7775

none- v [eada~

ES

55

_images/jenkins-system-configuration.png
System Configuration

&

Configure System
Configure global settings and paths.

b

efa

Managed files
.. settings.xml for maven, central managed
scripts, custom files,

.
P

Global Tool Configuration
Configure tools, their locations and automatic
installers.

S

Manage Plugins
Add, remove, disable or enable plugins that can
extend the functionality of Jenkins.

8 There are updates available

_static/devops/jenkins-system-configuration.png
System Configuration

&

Configure System
Configure global settings and paths.

b

efa

Managed files
.. settings.xml for maven, central managed
scripts, custom files,

.
P

Global Tool Configuration
Configure tools, their locations and automatic
installers.

S

Manage Plugins
Add, remove, disable or enable plugins that can
extend the functionality of Jenkins.

8 There are updates available

_images/ko.jpg

_images/ok.jpg

_images/cucumber-test-with-tags-1.png
cucumberGestionStock / src / test / resources / squash / 1_test gherkinfeature in master

<> Editfile © Preview changes

1
2
3
4

Feature: Stock management

Scenario Outline: Stock Addition
Given T must add <element>
And T assert its quantity
When T add it to my stock
Then T must at least have a minimum quantity in my stock

s etagl
10 Examples:

11 | element |
12 | "Ladders” |
13

1 etag2

15 Examples:

16 | element |
17 | “Trunks® |
15

19 etags

20 Examples:

21 | element |
22 | “Planks® |

_images/cucumber-test-with-tags-2.png
Test Case Workspace

4 [Cucumber

- 5 Cypress
- 5 SoapUI

B * Test project-1

O + Global filter Administration My_account (admin) Logout

Created on : 2021/03/08 10:14 (admin)
Updated on : 2021/03/08 14:27 (admin)

Test steps | Parameters | Attachments | Executions

Description [1D - 243

Format Classic

‘Automation
Automated test technology : Cucumber
‘Source code repository URL : hittps://my-scm/myrepo/cucumberGestionStock (master)

Automated test reference : cucumberGestionStock/src/test/resources/squash/1_test_gherkin.feature

_images/automated-suite-tab.png
Campaign Workspace

- [Folder Test T

4 @ Campaign Test 1

O v Global filter Administration My account (admin) Logout

<< 1 - Iteration

Created on : 2021/03/09 16:35 (admin)
Updated on : 2021/03/09 16:35 (admin)

Dashboard

Created on Status Created by Modified on
1 202193/9% @ taied Show executions detalls nrotlsr tserer 20240309

Show

Execution report.

s w1

« allure-report.tar
« test case cucumber

- test case

- test case

- test case

« test case cucumber(285

« test case cucumber(285

« test case cucumber(287

« test case cucumber(287]

« test case cucumber{287]-report.xml

* test case cypress(286]:calculator-report.xml
« test case junit[289]-TEST-squash.tfauto.CalculatorTest.xml
- test case junit{289]-squash.tfauto.CalculatorTest.txt

« test case robot framework[290]-log.htm!

- test case robot framework[290]-0
« test case robot framework[290]-report.html

i[201)-TEST-ForecastSu

« test case soa xanl

_images/automation_servers_declaration.png
ur: [

Description

Font -

_images/cucumber-test-with-tags-3.png
600

Test Case Workspace

4 [Cucumber

1+ 5 Cypress.
i+ [Soapul

(J v Global filter Administration My account (admin) Logout

<< test_case_1
(Created on : 2021/03/08 10:14 (admin)
i)

= Name Description Source test case
No matching records found

Dataset
tagl
tag2

B
1
2
3

tag3

_images/plugin-complete-switch.png
Configure the result publisher plugin

Test Project-1

Automated Executions

Choose your level of required information about automated executions run from a continuous integration tool:

Light @D Full

Light: to use if you launch your automated tests very often and want to limit your database size increase. When executing an
automated test plan, an automated suite is created but executions for test plan item are not.

Full: to use if you don't launch your automated tests very often or doesn't care about database size increase. \When an executing
automated test plan, an automated suite and one execution for each test plan item executed are created.

nav.xhtml

 Table of Contents

 		
 Welcome to Squash AUTOM & Squash DEVOPS documentation!

 		
 Squash AUTOM

 		
 Squash DEVOPS

 		
 FAQ

_static/images/ko.jpg

_static/images/ok.jpg

_images/agilitest-test-with-params-2.png
Test Case Workspace [v Global filter # Administration 2 My account (admin)

<< | test _case 1
n . . ﬂ ﬂ Created on : 2021/04/15 16:30 (admin)
Updated on ¢ 2021/04/15 16:32 (admin)

ro;
4 [Agiitest
‘test

Format : Classic

Reference :)
Description :

Status : © 1-Work in progress

Attribute:

Weight : 3 4-Low [Jauto

Nature : Undefined

Type : Undefined

‘Automation

Automated test technology : Agilitest
Source code repository URL : https://my-scm/myrepo/agilitestDocCheck (master)

Automated test reference : aglitestDocCheck/src/main/ats/firefox_param_com.ats

_images/soapui-test-1.png
S2xml-version="1.0"

encoding="UTF-8"&%

2 Fl<con:soapui-project. id="9b9b79eb-37b7-471a-a803-d99bb63c95A7" - activeEnvironment="Default" - name="OpenWeatherTest" rescurceRoot=""soapui-version="5.6.0" xmlns:con="http://cviware.con/soapui/config">
2 <con:settings/>
< <con:interface xsi con:RestService" . id="2c0e5fc9-3aa0-478£-8621-3c51£d5bbe20" wadlVersion="http://wadl.dev.jiava.net/2009/02" https://samples.openweathermap.org” - rrest
62 <con:interface xsi: con:RestService" id="£b60c829-5dbl-4cch-8af7-86a465339223" wadlVersion="http://wadl.dev.java.net/2009/02" https://samples.openweathermap.org” - rest
142 <con:interface xsi con:RestService" id="b5a239dB-cc96-46ab-b353-b140c994d30c" wadlVersion="http://wadl.dev.iava.net/2009/02" https://samples.openweathermap.org” - rest
200 <con:interface xsi: con:RestService" id="14dda3c1-7b£7-40c0-8502-a03d08c2402c" wadlVersion="http://wadl.dev.iava.net/2009/02" https://samples.openweathermap.org” - rest
249 <con:interface xsi con:RestService" id="db0a5036-6379-47b0-be5d-132£533c1833" wadlVersion="http://wadl.dev.iava.net/2009/02" https://samples.openweathermap.org” - rest
317 <con:testSuite- id="55¢761da-c028-4203-96da-d5ac42809de0" -name="Forecastsuite">
3 <con:settings/>
3 <con: runType>SEQUENTIALS/con: runType>
320 <con:testCase- id="966925ac-c0b0-4807-b3a8-4417a638a516" - failonError="true" - failTestCascOnErrors="true" kecpScssion="false"
321 <con:settings/>
322 <con:testStep: type="restrequest” name="GetForecastValues" . id="d633¢a59-6985-4917-ac05-4b78b893bdc7">
368 <con:testStep type="restrequest' name="GetForecastSLA" id="10d1661a-44dc-4c52-a3b0-a1939963d92d">
3 ~<con:propertics/>
4 </con:testCase>
4 <con:testCase- id="084bf404-e84d-4981-a391-18ba542d582¢" - failonError="true" - failTestCascOnErrors="true" kecpScssion="false"- "MunchenForecastAssertError" scarchPropertics="true">
102 <con:settings/>
03 <con:testStep: type="restrequest . name="GetMunchenForecast" . id="d15baf8a-a304-45da-ad51-c12a408£c83a">
443 <con:propertics/>
aas </con:testCase>
445 <con:propertics/>
446 </con:testSuite>
447 <con: testSuite- id="ad7d5b87-95¢3-4013-bcad-££552720cc2c" - name="HistorySuite">

<con:testSuite. id="7ad04027-60d0-4670-a556-a57c55d95e46" name="UVAndAirPoll">

_images/autom-workspace-columns.png
Auto.testtech. ¢ SemURL ¢ Auto. test ref.

_images/soapui-test-2.png
Test Case Workspace

B
¢ £ Cucumber
- 5 Cypress
- 5 Junit
= Robot Framen
4 [Soapu

0 v Global filter Administration My account (admin) Logou

Created on : 2021/03/08 10:14 (admin)
Updated on : 2021/03/08 10:14 (admin)

Test steps | Parameters | Attachments | Execu

Description [1D - 2441

Format Classic

‘Automation

Automated test technology : S0apuI

Source code repository URL : https://my-scm/myrepo/soapuiOpenWeather (master)

Automated test reference : soapuiOpenWeather/OpenWeatherTest-soapui-project.xmlForecastSuite=ForecastSucess

_images/robot-test-with-param-1.png
woaaaewne O

robot-parm-demo / parmTestrobot I

+%s Setctings rx

Edit

Documentation Example of Squash TF parameter use.
Library squash_tf.TFParamservice
Zibrary conditionalfang.py 42

#%% Test Cases *nx

Parameter Test
[Documentation]
SiparmValue)
Hang If Not
Snould Be Equal

Tnis test hangs,

fails or passes depending on parameter value

Get Param TC_REFERENCE

Siparmvalue}
Siparmvalue}

a2

_images/agilitest-test-with-params-1.png
¥ master + agilitestDocCheck / src / main / ats / firefox_param_com.ats

Latest commit adbccco

A1 contributor

18 lines (13 sloc) 748 Bytes

[ats-header]

author -> NX-DOMAIN\
created ->

[ats-variables]

[ats-actions]

channel-start -> firefox_paran_com_channel -> firefox
goto-url -> https://squash-tf.readthedocs.io/en/latest/
subscript -> g om [Senv(TC_CUF_tc)),Senv(DS_param)] => runnerfiane

check-property -> title = Welcome to Squash TF components documentation! — Squash TF components documentation

check-property -> href = https://squash-tf.readthedocs.io/projects/runner-java-junit -> a [text = Squash TF Java Junit Runner]
click -> a [text = Squash TF Java Junit Runner]

check-property -> text = Svar(runnerName) -> 1i [@index = 2] -> ul -> div [aria-label = breadcrumbs navigation]
channel-close -> firefox_paran_con_channel

_images/robot-test-with-param-2.png
Test Case Workspace

O v Global filter Administration My account (admin) Logout

Created on : 2021/03/09 04:43 (admin)

Updated on : 2021/03/09 12:38 (admin)
B * Test project-1

Test steps | Parameters | Attachments | Executions
- 5 Cucumber

- 5 Cypress
- 2 Junit Description {1D = 2471
4 Robot Framen

Format

Classic

Refe

ce: 42

‘Automation

Automated test technology :

Robot Framework

Source code repository URL : https://my-scm/myrepo/robot-parm-demo (master)

Automated test reference : robot-parm-demo/parmiTest.robot#Parameter Test

_images/test-plan-en.png
<< 1 €

2021/02/24 16:34 (admin)
2021/03/12 15:03 (admin)

Created on
Updated on

Information

#a Location

1 projetSquashAutom

Show entries

Button [Execute automat

. Mode

Ref.

Execution Plan

Test

tes | Rename

Run All the tests

¢ Wt ¢ Testsuite ¢

+ testAutom L -

Status

ready

%
success

0%

Button [Run automated tests]

Run Selected tests
ttion plan

® Remove from the ex

. Last executed

on s

User

Button
[start an executi

Click to display the options:
All and selection

_images/token-en.png
‘Authentication protocol

token authentication

‘Authentication policy

Credentials

_images/squash-devops-plugin-jenkins-upload.png
Jenl Plugin Manager

Upload Plugin

You can upload an hpi file to install a plugin from outside the central plugin repository.

File: [Choose File | No file chosen

Upload

_images/tc-automated-space.png
‘Automation

Automated test techrology : Robot Framework
Source code repository URL : https://my-scm/myrepo/my-repo (master)
Automated test reference : my-repo/test.robot=firstTestCase

_static/devops/squash-devops-plugin-jenkins-upload.png
Jenl Plugin Manager

Upload Plugin

You can upload an hpi file to install a plugin from outside the central plugin repository.

File: [Choose File | No file chosen

Upload

_static/plus.png

_static/file.png

_static/minus.png

_static/autom/autom-workspace-columns.png
Auto.testtech. ¢ SemURL ¢ Auto. test ref.

_static/autom/automated-suite-tab.png
Campaign Workspace

- [Folder Test T

4 @ Campaign Test 1

O v Global filter Administration My account (admin) Logout

<< 1 - Iteration

Created on : 2021/03/09 16:35 (admin)
Updated on : 2021/03/09 16:35 (admin)

Dashboard

Created on Status Created by Modified on
1 202193/9% @ taied Show executions detalls nrotlsr tserer 20240309

Show

Execution report.

s w1

« allure-report.tar
« test case cucumber

- test case

- test case

- test case

« test case cucumber(285

« test case cucumber(285

« test case cucumber(287

« test case cucumber(287]

« test case cucumber{287]-report.xml

* test case cypress(286]:calculator-report.xml
« test case junit[289]-TEST-squash.tfauto.CalculatorTest.xml
- test case junit{289]-squash.tfauto.CalculatorTest.txt

« test case robot framework[290]-log.htm!

- test case robot framework[290]-0
« test case robot framework[290]-report.html

i[201)-TEST-ForecastSu

« test case soa xanl

_static/autom/agilitest-test-with-params-1.png
¥ master + agilitestDocCheck / src / main / ats / firefox_param_com.ats

Latest commit adbccco

A1 contributor

18 lines (13 sloc) 748 Bytes

[ats-header]

author -> NX-DOMAIN\
created ->

[ats-variables]

[ats-actions]

channel-start -> firefox_paran_com_channel -> firefox
goto-url -> https://squash-tf.readthedocs.io/en/latest/
subscript -> g om [Senv(TC_CUF_tc)),Senv(DS_param)] => runnerfiane

check-property -> title = Welcome to Squash TF components documentation! — Squash TF components documentation

check-property -> href = https://squash-tf.readthedocs.io/projects/runner-java-junit -> a [text = Squash TF Java Junit Runner]
click -> a [text = Squash TF Java Junit Runner]

check-property -> text = Svar(runnerName) -> 1i [@index = 2] -> ul -> div [aria-label = breadcrumbs navigation]
channel-close -> firefox_paran_con_channel

_static/autom/agilitest-test-with-params-2.png
Test Case Workspace [v Global filter # Administration 2 My account (admin)

<< | test _case 1
n . . ﬂ ﬂ Created on : 2021/04/15 16:30 (admin)
Updated on ¢ 2021/04/15 16:32 (admin)

ro;
4 [Agiitest
‘test

Format : Classic

Reference :)
Description :

Status : © 1-Work in progress

Attribute:

Weight : 3 4-Low [Jauto

Nature : Undefined

Type : Undefined

‘Automation

Automated test technology : Agilitest
Source code repository URL : https://my-scm/myrepo/agilitestDocCheck (master)

Automated test reference : aglitestDocCheck/src/main/ats/firefox_param_com.ats

_static/autom/cucumber-test-with-tags-1.png
cucumberGestionStock / src / test / resources / squash / 1_test gherkinfeature in master

<> Editfile © Preview changes

1
2
3
4

Feature: Stock management

Scenario Outline: Stock Addition
Given T must add <element>
And T assert its quantity
When T add it to my stock
Then T must at least have a minimum quantity in my stock

s etagl
10 Examples:

11 | element |
12 | "Ladders” |
13

1 etag2

15 Examples:

16 | element |
17 | “Trunks® |
15

19 etags

20 Examples:

21 | element |
22 | “Planks® |

_static/autom/cucumber-test-with-tags-2.png
Test Case Workspace

4 [Cucumber

- 5 Cypress
- 5 SoapUI

B * Test project-1

O + Global filter Administration My_account (admin) Logout

Created on : 2021/03/08 10:14 (admin)
Updated on : 2021/03/08 14:27 (admin)

Test steps | Parameters | Attachments | Executions

Description [1D - 243

Format Classic

‘Automation
Automated test technology : Cucumber
‘Source code repository URL : hittps://my-scm/myrepo/cucumberGestionStock (master)

Automated test reference : cucumberGestionStock/src/test/resources/squash/1_test_gherkin.feature

_static/autom/automation_servers_declaration.png
ur: [

Description

Font -

_static/autom/cypress-test-with-params-2.png
Test Case Workspace

B
I+ 5 Cucumber
4 Cypress
A
- 2 SoapUt

600

0 v Global filter Administration My account (admin) Logout|

Created on : 2021/03/08 10:14 (admin)
Updated on : 2021/03/08 10:15 (admin)

(B o | s | e
n [ID = 2421

Format Classic

Reference :
Description : (Click to edt...)

Status 1-Work in progress

Attributes

{ sub_result: 5 J
‘Automation
Automated test technology : Cypress
Source code repository URL : https://my-scm/myrepo/cypressParamCalculator (master)
Automated test reference : yp / / ec.js

Bl = Campaion Test 1 T

4 @ 1- Iteration - 1
@ test_suite_1

add_resul

4 @ Campaign Test 1
B8 % 1 - Tteration - 1|
@ test_suite_1

4 @ Campaign Test 1
5@ 1- Tteration - 1
9@ test_suite_1

div_result: 2

_static/autom/iteration-execution-detail.png
Campaign Workspace [J v Global fiiter Administration My account _(_admin) Logout

Execution: #1 - test_case_cucumber

Dataset tagl
Auto, seript - (deleted)

‘Attributes

weight a-Low
Nature Undefined
Type Undefined

sub_res

nthe testcase) : 5

Verified requirements

Project Version ID Reference Requirement Criticality

No matching records found
Showing 0 to 0 of 0 entries

Custom fields
Result summary
‘Execution Script

Action Exp. Result Status Last Exec. User Comments At Run
No matching records found

Attachments " Upload Attachment Organize

_static/autom/cucumber-test-with-tags-3.png
600

Test Case Workspace

4 [Cucumber

1+ 5 Cypress.
i+ [Soapul

(J v Global filter Administration My account (admin) Logout

<< test_case_1
(Created on : 2021/03/08 10:14 (admin)
i)

= Name Description Source test case
No matching records found

Dataset
tagl
tag2

B
1
2
3

tag3

_static/autom/cypress-test-with-params-1.png
$ master v cypressParamCalculator / cypress / integration / calculator.spec.js /<> Jump to ~ Go to file
Latest commit de767a1 on Jan 28 D) History

A1 contributor

22 lines (22 sloc) 536 Bytes Raw Beme 0 2 O

describe(*Caleulator’, () => {
it('add’,) = {

vara=s
var b = 12
expect(a + b).to.equal (parselnt(Cypress.env(’ CPG_CUF_add_result’)))
»
itCmit, O = {
vara =2
var b =4
expect(a * b).to.equal(parselnt(Cypress.env(* IT_CUF_mult_result’)))
»

it(su, O = {
var a = 10
varb =5
expect(a - b).to.equal (parselnt(Cypress.env(*'TC_CUF_sub_result’)))
»
itCdiv, O = {
var a = 10
varb =5
expect(a / b).to.equal (parselnt(Cypress.env(*TS_CUF_div_result’)))
»
»

_static/autom/junit-test-with-param-2.png
O v Global filter Administration My account (admin) Logout

Test Case Workspace

Created on : 2021/02/04 14:18 (admin)
Updated on : 2021/02/04 14:18 (admin)

Test steps | Parameters | Attachments | Executions

Description [1D - 240]

‘Automation

B * Test project-1

i [Test Folder a
348, 42 - test_case_robot_framework

Automated test technology : JUnit
Source code repository URL : https://my-scm/myrepo/junitCalc (master)

Automated test reference : junitCalc/squash.tfauto.CalculatorTest=multFailure

_static/autom/iteration-execution-tab.png
Campaign Workspace

4 [Folder Test T

4 @ Campaign Test 1

O v Global filter # Administration 2 My account (admin) © Logout

<< 1 - Iteration

Created on : 2021/03/09 16:35 (admin)
Updated on : 2021/03/09 16:35 (admin)

. Last
Datasets 5 TELSUE siars o % user o exeauted on
Userver 2021/03/00
Lo - © possed 1005t 220005 @ @)
(tfserver) 1840
2021/03/09
tagt passed trserver 2921 (c]
tserver 2021/03/00
L - © possed 1005t 22000305 @ @)
(tfserver) 1840
2021/03/09
t202 passed trserver 292 6
Userver 2021/03/00
L tag3 = @ faled 0% tserver o0

(tfserver) 1640

_static/autom/junit-test-with-param-1.png
package squash.tfauto;

import org.junit.jupiter.api.Assertions;
inport org.junit.jupiter.api.DisplayName;
inport org.junit.jupiter.api.Test;

@isplayliane("Calculator™)
public class CalculatorTest {

eTest
public void multFailure(){

int first = 2;

int second = 4;

Assertions.assertTrus((first*second)==6, "Le résultat du calcul est incorrect. " + First + * *

